• Laser & Optoelectronics Progress
  • Vol. 54, Issue 11, 112601 (2017)
Yang Cuihong1、2、*, Wang Lu1、2, Chen Yunyun1、2, and Lei Yong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.112601 Cite this Article Set citation alerts
    Yang Cuihong, Wang Lu, Chen Yunyun, Lei Yong. Optical Absorption Property of Graphene PN Junction Modulated by Voltage in Terahertz Region[J]. Laser & Optoelectronics Progress, 2017, 54(11): 112601 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

    [2] Zhang Y, Tan Y W,Stormer H L, et al. Experimental observation of quantum Hall effect and Berry′s phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

    [3] Li Z Q,Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7): 532-535.

    [4] Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101(19): 196405.

    [5] Kuzmenko A B, Van Heumen E, Carbone F, et al. Universal optical conductance of graphite[J]. Physical Review Letters, 2008, 100(11): 117401.

    [6] Falkovsky L A, Varlamov A A. Space-time dispersion of graphene conductivity[J]. European Physical Journal B, 2007, 56(4): 281-284.

    [7] Stauber T, Peres N M R, Geim A K. The optical conductivity of graphene in the visible region of the spectrum[J]. Physical Review B, 2008, 78(8): 085432.

    [8] Xiao Y M, Xu W, Peeters F M. Infrared to terahertz absorption window in mono- and multi-layer graphene systems[J]. Optics Communications, 2014, 328(10): 135-142.

    [9] Luo X, Qiu T, Lu W, et al. Plasmons in graphene: Recent progress and applications[J]. Materials Science & Engineering Reports, 2013, 74(11): 351-376.

    [10] Xiao B, Qin K, Xiao S, et al. Metal-loaded graphene surface plasmon waveguides working in the terahertz regime[J]. Optics Communications, 2015, 355: 602-606.

    [11] Cui J, Sun Y, Wang L, et al. Graphene plasmonic waveguide based on a high-index dielectric wedge for compact photonic integration[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(1): 152-155.

    [12] He X, Fu J, Fu X, et al. Analysis of mid-infrared graphene surface plasmons[J]. Optics Communications, 2014, 332(4): 149-153.

    [13] Liu J T, Liu N H, Li J, et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J]. Applied Physics Letters, 2012, 101: 052104.

    [14] Hu J H, Huang Y Q, Duan X F, et al. Enhanced absorption of graphene strips with a multilayer subwavelength grating structure[J]. Applied Physics Letters, 2014, 105(22): 221113.

    [15] Zhang L, Wang G, Han X,et al. Transmission property of one-dimensional multilayer graphene-dielectric stack[J]. Optik - International Journal for Light and Electron Optics, 2016, 127(4): 2030-2035.

    [16] Zhang Y, Wu Z, Cao Y, et al. Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal[J]. Optics Communications, 2015, 338: 168-173.

    [17] Entezar S R, Saleki Z, Madani A. Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers[J]. Physica B: Condensed Matter, 2015, 478: 122-126.

    [18] Madani A, Entezar S R. Optical properties of one-dimensional photonic crystals containing graphene sheets[J]. Physica B: Condensed Matter, 2013, 431: 1-5.

    [19] Ryzhii V, Ryzhii M, Satou A, et al. Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures[J]. Journal of Applied Physics, 2009, 106: 084507.

    [20] Ryzhii V, Dubinov A A, Aleshkin V Y, et al. Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure[J]. Applied Physics Letters, 2013, 103(16): 163507.

    [21] Ryzhii M, Ryzhii V. Injection and population inversion in electrically induced p-n junction in graphene with split gates[J]. Japanese Journal of Applied Physics, 2007, 46(8): L151-L153.

    [22] Xu X G, Sultan S, Zhang C, et al. Nonlinear optical conductance in a graphene pn junction in the terahertz regime[J]. Applied Physics Letters, 2010, 97(1): 011907.

    [23] Svintsov D, Vyurkov V, Ryzhii V, et al. Voltage-controlled surface plasmon-polaritons in double graphene layer structures[J]. Journal of Applied Physics, 2013, 113(5): 053701.

    [24] Zhang Y P, Liu Y Q, Cao Y Y, et al. Gain characteristics of THz surface plasmons in electrically pumped monolayer graphene[J]. European Physical Journal: Applied Physics, 2015, 69(1): 10803.

    [25] Feng Wei, Zhang Rong, Cao Juncheng. Progress of terahertz devices based on graphene[J]. Acta Physica Sinica, 2015, 64(22): 229501.

    [26] Bi Weihong, Wang Xiaoyu, Fu Guangwei, et al. Review on optical modulator based on graphene[J]. Journal of Yanshan University, 2015, 39(3) 189-198.

    [27] Su Juan, Cheng Binbin, Deng Xianjin. Recent progress on graphene-based terahertz optoelectronics[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(3): 511-519.

    CLP Journals

    [1] Cao Jianguo, Zhou Yixuan. Polarization Modulation of Terahertz Wave by Graphene Metamaterial with Grating Structure[J]. Laser & Optoelectronics Progress, 2018, 55(9): 92501

    Yang Cuihong, Wang Lu, Chen Yunyun, Lei Yong. Optical Absorption Property of Graphene PN Junction Modulated by Voltage in Terahertz Region[J]. Laser & Optoelectronics Progress, 2017, 54(11): 112601
    Download Citation