• High Power Laser and Particle Beams
  • Vol. 35, Issue 1, 012006 (2023)
Yu Lu1, Hao Zhang1, Liangqi Zhang1、2, Yuqing Wei1, Qianni Li1, Rong Sha1, Fuqiu Shao1, and Tongpu Yu1、*
Author Affiliations
  • 1College of Science, National University of Defense Technology, Changsha 410073, China
  • 2School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • show less
    DOI: 10.11884/HPLPB202335.220222 Cite this Article
    Yu Lu, Hao Zhang, Liangqi Zhang, Yuqing Wei, Qianni Li, Rong Sha, Fuqiu Shao, Tongpu Yu. Research progress of X/γ photon emission in laser-plasma interaction[J]. High Power Laser and Particle Beams, 2023, 35(1): 012006 Copy Citation Text show less
    References

    [1] Einstein A. Strahlungs-Emission und -Absorption nach der Quantentheorie[J]. Verhandlungen der Deutschen Physikalischen Gesellschaft, 18, 318-323(1916).

    [2] Li Wenqi, Gan Zebiao, Yu Lianghong, et al. 339 J high-energy Ti: sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 43, 5681-5684(2018).

    [3] Lureau F, Matras G, Chalus O, et al. High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability[J]. High Power Laser Science and Engineering, 8, e43(2020).

    [4] Blackburn T G, Ridgers C P, Kirk J G, et al. Quantum radiation reaction in laser–electron-beam collisions[J]. Physical Review Letters, 112, 015001(2014).

    [5] Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 82, 664-679(1951).

    [6] Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 108, 165006(2012).

    [7] Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 101, 200403(2008).

    [8] Martin J L, Migus A, Mourou G A, et al. Ultrafast phenomena VIII[M]. Berlin: Springer, 1993.

    [9] Kuraev E A, Bystritskiy Y M, Tomasi-Gustafsson E. Bremsstrahlung and pair production processes at low energies: multidifferential cross section and polarization phenomena[J]. Physical Review C, 81, 055208(2010).

    [10] Galy J, Maučec M, Hamilton D J, et al. Bremsstrahlung production with high-intensity laser matter interactions and applications[J]. New Journal of Physics, 9, 23(2007).

    [11] Yan Wenchao, Fruhling C, Golovin G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 11, 514-520(2017).

    [12] Sarri G, Corvan D J, Schumaker W, et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering[J]. Physical Review Letters, 113, 224801(2014).

    [13] Henderson A, Liang E, Riley N, et al. Ultra-intense gamma-rays created using the Texas Petawatt Laser[J]. High Energy Density Physics, 12, 46-56(2014).

    [14] Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 7, 867-871(2011).

    [15] Capdessus R, d’Humières E, Tikhonchuk V T. Influence of ion mass on laser-energy absorption and synchrotron radiation at ultrahigh laser intensities[J]. Physical Review Letters, 110, 215003(2013).

    [16] Chen L, Dürr K L, Gouaux E. X-ray structures of AMPA receptor–cone snail toxin complexes illuminate activation mechanism[J]. Science, 345, 1021-1026(2014).

    [17] de Castro Fonseca M, Araujo B H S, Dias C S B, et al. High-resolution synchrotron-based X-ray microtomography as a tool to unveil the three-dimensional neuronal architecture of the brain[J]. Scientific Reports, 8, 12074(2018).

    [18] Kersell H, Shirato N, Cummings M, et al. Detecting element specific electrons from a single cobalt nanocluster with synchrotron X-ray scanning tunneling microscopy[J]. Applied Physics Letters, 111, 103102(2017).

    [19] Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 85, 1-48(2013).

    [20] Chen Liming, Yan Wenchao, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 3, 1912(2013).

    [21] Chen Min, Liu Feng, Li Boyuan, . Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 32, 092001(2020).

    [22] Döpp A, Hehn L, Götzfried J, et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 5, 199-203(2018).

    [23] Fourmaux S, Hallin E, Chaulagain U, et al. Laser-based synchrotron X-ray radiation experimental scaling[J]. Optics Express, 28, 3147-3158(2020).

    [24] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 43, 267-270(1979).

    [25] Pukhov A, Meyer-ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 74, 355-361(2002).

    [26] Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics-Accelerators and Beams, 10, 061301(2007).

    [27] Jansen O, Tückmantel T, Pukhov A. Scaling electron acceleration in the bubble regime for upcoming lasers[J]. The European Physical Journal Special Topics, 223, 1017-1030(2014).

    [28] Esarey E, Shadwick B A, Catravas P, et al. Synchrotron radiation from electron beams in plasma-focusing channels[J]. Physical Review E, 65, 056505(2002).

    [29] Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 120, 254802(2018).

    [30] Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 10, 011061(2020).

    [31] Vieira J, Martins J, Sinha U. Plasma based helical undulat f controlled emission of circularly elliptically polarised betatron radiation[DBOL]. arXiv preprint arXiv: 1601.04422, 2016.

    [32] Ferri J, Davoine X. Enhancement of betatron X rays through asymmetric laser wakefield generated in transverse density gradients[J]. Physical Review Accelerators and Beams, 21, 091302(2018).

    [33] Lamberti C, Groppo E, Prestipino C, et al. Oxide/metal interface distance and epitaxial strain in the NiO/Ag(001) system[J]. Physical Review Letters, 91, 046101(2003).

    [34] Stöhr J, Wu Y, Hermsmeier B D, et al. Element-specific magnetic microscopy with circularly polarized X-rays[J]. Science, 259, 658-661(1993).

    [35] Döpp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 6, e17086(2017).

    [36] Feng Jie, Li Yifei, Geng Xiaotao, et al. Circularly polarized X-ray generation from an ionization induced laser plasma electron accelerator[J]. Plasma Physics and Controlled Fusion, 62, 105021(2020).

    [37] Zhang Guobo, Chen Min, Yang Xiaohu, et al. Betatron radiation polarization control by using an off-axis ionization injection in a laser wakefield acceleration[J]. Optics Express, 28, 29927-29936(2020).

    [38] Chen Min, Esarey E, Schroeder C B, et al. Theory of ionization-induced trapping in laser-plasma accelerators[J]. Physics of Plasmas, 19, 033101(2012).

    [39] Zhu Xinglong, Chen Min, Weng Suming, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 6, eaaz7240(2020).

    [40] Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 112, 145003(2014).

    [41] Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DBOL]. arXiv preprint arXiv: 2109.12467, 2021.

    [42] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 84, 1177-1228(2012).

    [43] Lau L D, Lifshitz E M. The classical they of fields[M]. 4th ed. Oxfd: ButterwthHeinemann, 1980.

    [44] Zhu Xinglong, Yin Yan, Yu Tongpu, et al. Enhanced electron trapping and γ-ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone[J]. New Journal of Physics, 17, 053039(2015).

    [45] Zhu Xinglong, Yin Yan, Yu Tongpu, et al. Ultra-bright, high-energy-density γ-ray emission from a gas-filled gold cone-capillary[J]. Physics of Plasmas, 22, 093109(2015).

    [46] Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 116, 185003(2016).

    [47] Popmintchev T, Chen Mingchang, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [48] Lu Yu, Zhang Guobo, Zhao Jie, et al. Ultra-brilliant GeV betatronlike radiation from energetic electrons oscillating in frequency-downshifted laser pulses[J]. Optics Express, 29, 8926-8940(2021).

    [49] Hu Yanting, Zhao Jie, Zhang Hao, et al. Attosecond γ-ray vortex generation in near-critical-density plasma driven by twisted laser pulses[J]. Applied Physics Letters, 118, 054101(2021).

    [50] Zhu Xinglong, Yu Tongpu, Chen Min, et al. Generation of GeV positron and γ-photon beams with controllable angular momentum by intense lasers[J]. New Journal of Physics, 20, 083013(2018).

    [51] Lu Yu, Zhang Hao, Hu Yanting, et al. Effect of laser polarization on the electron dynamics and photon emission in near-critical-density plasmas[J]. Plasma Physics and Controlled Fusion, 62, 035002(2020).

    [52] Compton A H. A quantum theory of the scattering of X-rays by light elements[J]. Physical Review, 21, 483-502(1923).

    [53] Gu Y J, Klimo O, Weber S, et al. High density ultrashort relativistic positron beam generation by laser-plasma interaction[J]. New Journal of Physics, 18, 113023(2016).

    [54] Zhu Xinglong, Yu Tongpu, Sheng Zhengming, et al. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 7, 13686(2016).

    [55] Shen Yijie, Wang Xuejiao, Xie Zhenwei, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [56] Harwit M. Photon orbital angular momentum in astrophysics[J]. The Astrophysical Journal, 597, 1266-1270(2003).

    [57] Zhao Jie, Hu Yanting, Lu Yu, et al. All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields[J]. Communications Physics, 5, 1-10(2022).

    [58] Liu Jinjin, Yu Tongpu, Yin Yan, et al. All-optical bright γ-ray and dense positron source by laser driven plasmas-filled cone[J]. Optics Express, 24, 15978-15986(2016).

    [59] Gu Yanjun, Klimo O, Bulanov S V, et al. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses[J]. Communications Physics, 1, 93(2018).

    [60] Liu Jianbo, Yu Jinqing, Shou Yinren, et al. Generation of bright γ-ray/hard X-ray flash with intense femtosecond pulses and double-layer targets[J]. Physics of Plasmas, 26, 033109(2019).

    [61] Huang T W, Kim C M, Zhou Cangtao, et al. Tabletop laser-driven gamma-ray source with nanostructured double-layer target[J]. Plasma Physics and Controlled Fusion, 60, 115006(2018).

    [62] Kneip S, Nagel S R, Bellei C, et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity[J]. Physical Review Letters, 100, 105006(2008).

    [63] Huang T W, Robinson A P L, Zhou C T, et al. Characteristics of betatron radiation from direct-laser-accelerated electrons[J]. Physical Review E, 93, 063203(2016).

    [64] Wang Jian, Zhu Bin, Yu Tongpu, et al. High-flux X-ray photon emission by a superluminal hybrid electromagnetic mode of intense laser in a plasma waveguide[J]. Plasma Physics and Controlled Fusion, 61, 085026(2019).

    [65] Yi Longqing, Pukhov A, Shen Baifei. Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime[J]. Physics of Plasmas, 23, 073110(2016).

    [66] Wang Jian, Zhu Bin, Wang Dangchao, et al. Brilliant keV-MeV X-ray emission through weakly unbalanced quasi-static electric and magnetic fields[J]. Plasma Physics and Controlled Fusion, 62, 025016(2020).

    [67] Yu Tongpu, Pukhov A, Sheng Zhengming, et al. Bright betatronlike X rays from radiation pressure acceleration of a mass-limited foil target[J]. Physical Review Letters, 110, 045001(2013).

    [68] Yu Tongpu, Sheng Zhengming, Yin Yan, et al. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities[J]. Physics of Plasmas, 21, 053105(2014).

    [69] Wang Weimin, Sheng Zhengming, Gibbon P, et al. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 9911-9916(2018).

    [70] Yu Jinqing, Hu Ronghao, Gong Zheng, et al. The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Applied Physics Letters, 112, 204103(2018).

    [71] Luo Wen, Zhuo Hongbin, Ma Yanyun, et al. Attosecond Thomson-scattering X-ray source driven by laser-based electron acceleration[J]. Applied Physics Letters, 103, 174103(2013).

    [72] Hu Lixiang, Yu Tongpu, Shao Fuqiu, et al. A bright attosecond X-ray pulse train generation in a double-laser-driven cone target[J]. Journal of Applied Physics, 119, 243301(2016).

    [73] Luo Wen, Zhu Yibo, Zhuo Hongbin, et al. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets[J]. Physics of Plasmas, 22, 063112(2015).

    [74] Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 92, 053107(2015).

    [75] Li Hanzhen, Yu Tongpu, Liu Jinjin, et al. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils[J]. Scientific Reports, 7, 17312(2017).

    [76] Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 25, 21583-21593(2017).

    [77] Lu Yu, Yu Tongpu, Hu Lixiang, et al. Enhanced copious electron–positron pair production via electron injection from a mass-limited foil[J]. Plasma Physics and Controlled Fusion, 60, 125008(2018).

    [78] Zhang Liangqi, Wu Shaodong, Huang Hairong, et al. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array[J]. Physics of Plasmas, 28, 023110(2021).

    [79] Zhu Xinglong, Chen Min, Yu Tongpu, et al. Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets[J]. Applied Physics Letters, 112, 174102(2018).

    [80] Liu Chen, Shen Baifei, Zhang Xiaomei, et al. Generation of gamma-ray beam with orbital angular momentum in the QED regime[J]. Physics of Plasmas, 23, 093120(2016).

    [81] Zhang Hao, Zhao Jie, Hu Yanting, et al. Efficient bright γ-ray vortex emission from a laser-illuminated light-fan-in-channel target[J]. High Power Laser Science and Engineering, 9, e43(2021).

    [82] Feng B, Qin C Y, Geng Xuesong, et al. The emission of γ-ray beams with orbital angular momentum in laser-driven micro-channel plasma target[J]. Scientific Reports, 9, 18780(2019).

    [83] Liu Ke, Yu Tongpu, Zou Debin, et al. Twisted radiation from nonlinear Thomson scattering with arbitrary incident angle[J]. The European Physical Journal D, 74, 7(2020).

    [84] Haessler S, Ouillé M, Kaur J, et al. High-harmonic generation and correlated electron emission from relativistic plasma mirrors at 1 kHz repetition rate[J]. Ultrafast Science, 2022, 9893418(2022).

    [85] Mirzanejad S, Salehi M. Two-color high-order-harmonic generation: relativistic mirror effects and attosecond pulses[J]. Physical Review A, 87, 063815(2013).

    [86] Zhang Xueyu, Rykovanov S, Shi Mingyuan, et al. Giant isolated attosecond pulses from two-color laser-plasma interactions[J]. Physical Review Letters, 124, 114802(2020).

    [87] Zhong C L, Qiao B, Xu X R, et al. Intense circularly polarized attosecond pulse generation from solid targets irradiated with a two-color linearly polarized laser[J]. Physical Review A, 101, 053814(2020).

    [88] Chen Ziyu. Spectral control of high harmonics from relativistic plasmas using bicircular fields[J]. Physical Review E, 97, 043202(2018).

    [89] Li Qianni, Xu Xinrong, Wu Yanbo, et al. Efficient high-order harmonics generation from overdense plasma irradiated by a two-color co-rotating circularly polarized laser pulse[J]. Optics Express, 30, 15470-15481(2022).

    [90] Li Qianni, Xu Xinrong, Wu Yanbo, et al. Generation of single circularly polarized attosecond pulse from nearcritical density plasma irradiated by a twocol corotating circular polarized laser. (Under Review).

    [91] Guo Bo, Liu Dexiang, Wu Shuanghua, . Micro-focus computed tomography for turbine blade based on all-optical bremsstrahlung source[J]. High Power Laser and Particle Beams, 33, 074001(2021).

    [92] Weeks K J, Litvinenko V N, Madey J M. The Compton backscattering process and radiotherapy[J]. Medical Physics, 24, 417-423(1997).

    [93] Gao Dangzhong, Zhao Xuesen, Ma Xiaojun, . Measurement of implosion target parameters by X-ray phase contrast imaging[J]. High Power Laser and Particle Beams, 24, 2627-2630(2012).

    [94] Kwan E, Rusev G, Adekola A S, et al. Discrete deexcitations in 235U below 3 MeV from nuclear resonance fluorescence[J]. Physical Review C, 83, 041601(2011).

    [95] Chen Hui, Link A, Sentoku Y, et al. The scaling of electron and positron generation in intense laser-solid interactions[J]. Physics of Plasmas, 22, 056705(2015).

    [96] Bulanov S V, Esirkepov T Z, Kando M, et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers[J]. Plasma Physics Reports, 41, 1-51(2015).

    Yu Lu, Hao Zhang, Liangqi Zhang, Yuqing Wei, Qianni Li, Rong Sha, Fuqiu Shao, Tongpu Yu. Research progress of X/γ photon emission in laser-plasma interaction[J]. High Power Laser and Particle Beams, 2023, 35(1): 012006
    Download Citation