• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 315 (2019)
Hui-Shan HU, Jun-You YANG, Ji-Wu XIN, Si-Hui LI, Qing-Hui JIANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.15541/jim20180288 Cite this Article
    Hui-Shan HU, Jun-You YANG, Ji-Wu XIN, Si-Hui LI, Qing-Hui JIANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. High Thermoelectric Performance of SnTe from the Disproportionation of SnO[J]. Journal of Inorganic Materials, 2019, 34(3): 315 Copy Citation Text show less
    References

    [2] J ZHU T, Q ZHANG, Q CAO Y et al. Bulk nanostructured thermoelectric materials: preparation, structure and properties. Journal of Electronic Materials, 39, 1990-1995(2010).

    [3] C YU, Z SHI R, J ZHU T et al. High-performance half-heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering. Acta Materialia, 57, 2757-2764(2009).

    [4] Z PEI Y, H XIE H, H WANG et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Advanced Functional Materials, 23, 5123-5130(2013).

    [5] Y ZHANG X, Z PEI Y, W CHEN Z et al. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 30, 1-12(2018).

    [6] L YANG, J ZOU, R MOSHWAN et al. Eco-friendly SnTe thermoelectric materials: progress. Eco-friendly SnTe thermoelectric materials: progress and future challenges. Advanced Functional Materials, 27, 1-18(2017).

    [7] J HWANG, A MECHOLSKY N et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys. Chemistry of Materials, 28, 376-384(2016).

    [8] T XU J, Q LIU G, F TAN X et al. Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering. Journal of Materiomics, 4, 62-67(2018).

    [9] Y YANG J, Y LIU, H JIANG Q et al. Microstructure tailoring in nanostructured thermoelectric materials. Journal of Advanced Dielectrics, 6, 1-16(2016).

    [10] K BISWAS, Y WANG G, Q HE J et al. High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M=Ca, Ba). Energy & Environmental Science, 4, 4675-4684(2011).

    [11] R KORTUM, F HERMAN, I ORTENBURGER et al. Relativistic band structure of GeTe. Relativistic band structure of GeTe, SnTe, PbTe, PbSe,PbS. Journal de Physique Colloques, 29, 62-C64-77(1968).

    [12] F BREBRICK R. Deviations from stoichiometry and electrical properties in SnTe. Journal of Physics and Chemistry of Solids, 24, 27-36(1963).

    [13] F BREBRICK R, J STRAUSS A. Anomalous thermoelectric power as evidence for two-valence bands in SnTe. Physical Review, 131, 104-110(1963).

    [14] M ROGERS L, J CROCKER A. Interpretation of the Hall coefficient, electrical resistivity and seebeck coefficient of p-type lead telluride. British Journal of Applied Physics, 18, 563(1967).

    [15] P VEDENEEV V, P SABO E, P KRIVORUCHKO S. Tin telluride based thermoelectrical alloys. Semiconductors, 32, 241-244(1998).

    [16] J WU H, X ZHANG, D ZHAO L et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. Journal of the American Chemical Society, 138, 2366-2373(2016).

    [17] Y SHI F, J TAN G, D ZHAO L. et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. Journal of the American Chemical Society, 136, 7006-7017(2014).

    [18] W LI, L ZHENG L, Z PEI Y et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Advanced Electronic Materials, 2, 1600019(2016).

    [19] H JIANG Q, Y YANG J, W ZHOU Z et al. Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe. Journal of Materials Chemistry A, 4, 13171-13175(2016).

    [20] W LI, L ZHENG L, Q LIN S et al. Interstitial defects improving thermoelectric SnTe in addition to band convergence. ACS Energy Letters, 2, 563-568(2017).

    [22] Z PEI Y, A LALONDE, Y SHI X et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66(2011).

    [23] B MIHAILA, K SCHULZE R, B LITTLEWOOD P et al. Band structure of SnTe studied by photoemission spectroscopy. Physical Review Letters, 105, 1-4(2010).

    [24] Y ZHANG Q, C LAN Y, S LIU W et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Advanced Energy Materials, 1, 577-587(2011).

    [25] Y SHI F, J TAN G, H HAO S et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. Journal of the American Chemical Society, 137, 5100-5112(2015).

    [26] C LAN Y, L LIAO B, Q ZHANG et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proceedings of the National Academy of Sciences, 110, 13261-13266(2013).

    Hui-Shan HU, Jun-You YANG, Ji-Wu XIN, Si-Hui LI, Qing-Hui JIANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. High Thermoelectric Performance of SnTe from the Disproportionation of SnO[J]. Journal of Inorganic Materials, 2019, 34(3): 315
    Download Citation