• Laser & Optoelectronics Progress
  • Vol. 49, Issue 12, 120002 (2012)
Wang Yanming*, Xu Linwei, Tan Jian, and Xu Yabing
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop49.120002 Cite this Article Set citation alerts
    Wang Yanming, Xu Linwei, Tan Jian, Xu Yabing. Research Progress in Droop Effect of InGaN-Based Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2012, 49(12): 120002 Copy Citation Text show less
    References

    [1] Yu Fei, Jin Lei. Mathematical model of aging and the life test method for GaN LED[J]. Chinese J. Lasers, 2011, 38(8): 0806001

    [2] Cui Miao, Zhou Taofei, Zhang Jinping et al.. Influence of In fraction on the optical properties on InGaN/GaN blue light-emitting diodes[J]. Acta Optica Sinica, 2011, 31(10): 1016004

    [3] Wang Yanming, Xiong Chuanbing, Wang Guangxu et al.. Study on aging characterization of 1 W epitaxy on Si substrate blue LED based on different substrates[J]. Acta Optica Sinica, 2010, 30(6): 1749~1754

    [4] Zhu Youzhang, Fu Guanxin, Wang Hongxia et al.. Luminescence of GaN thick film grow by HVPE[J]. Laser & Optoelectronics Progress, 2011, 48(9): 093101

    [5] Liu Junlin, Qiu Chong, Jiang Fengyi. Research of passivation and anti reflecting layer on GaN based blue LED on silicon substrate[J]. Acta Optica Sinica, 2010, 30(10): 2978~2982

    [6] H. Hirayama, S. Fujikawa, N. Noguchi et al.. 222~282 nm AlGaN and InAlGaN-based deep-UV lEDs fabricated on high-quality AlN on sapphire[J]. Phys. Stat. Sol. A, 2009, 206(6): 1176~1182

    [7] W.Sun, M. Shatalov, J. Deng et al.. Efficiency droop in 245~247 nm AlGaN light-emetting diodes with continuous wave 2 mW output power[J]. Appl. Phys. Lett., 2010, 96(6): 061102

    [8] Y. Yamane, K. Fujiwara, J. K.Sheu. Largely variable electroluminescence efficiency with current and temperature in a blue InGaN multiple-quantum-well diode[J]. Appl. Phys. Lett., 2007, 91(7): 073501

    [9] M.T.Schubert, S. Chhajed, J. K. Kim et al.. Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes[J]. Appl. Phys. Lett., 2007, 91(23): 231114

    [10] E. Fred Schubert. Light-Emitting Diodes (2nd ed.)[M]. Cambridge: Cambridge University Press, 2006. 40

    [11] Y. C. Shen, G. O. Mueller, S. Watanabe et al.. Auger recombination in InGaN measured by photoluminescence[J]. Appl. Phys. Lett., 2007, 91(14): 141101

    [12] M. Zhang, P. Bhattacharya, J. Singh et al.. Direct measurement of Auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN quantum wells light emitting diodes[J]. Appl. Phys. Lett., 2009, 95(20): 201108

    [13] M. Meneghini, N. Trivellin, G. Meneghesso et al.. A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes[J]. J. Appl. Phys., 2009, 106(11): 114508

    [14] A. Laubsch, M. Sabathil, M. Strassburg et al.. Improving the High-Current Efficience of LEDs[OL]. http://spie.org/x34705.xml, April16, 2009

    [15] A. Laubsch, M. Sabathil, J. Baur et al.. High-power and high-efficiency InGaN-based light emitters[J]. IEEE Trans. Electron Devices, 2010, 57(1): 79~87

    [16] B. Pasenow, S. W. Koch, J. Hader et al.. Auger losses in GaN-based quantum wells: microscopic theory[J]. Phys. Stat. Soli. C, 2009, 6(S2): S864~S868

    [17] A. Mao, J. Cho, E. Fred Schubert et al.. Reduction of efficiency droop in GaInN/GaN light emitting-diodes with thick AlGaN cladding layers[J]. Electron. Mater. Lett., 2012, 8(1): 1~4

    [18] M. J. Lai, L. B. Chang, R. M. Lin et al.. Improvement of external quantum efficiency in InGaN-based double-heterostructure light-emitting diodes[J]. Appl. Phys. Express, 2010, 3(7): 072102

    [19] X. Li, H. Liu, X. Ni et al.. Effect of carrier spillover and Auger recombination on the efficiency droop in InGaN-based blue LEDs[J]. Superlattices Microstruct., 2010, 47(1): 118~122

    [20] Y. J. Lee, Y. C. Chen, C. J. Lee et al.. Stable temperature characteristics and suppression of efficiency droop in InGaN green light-emitting diodes using pre-TMIn flow treatment[J]. IEEE Photon. Technol. Lett., 2010, 22(17): 1279~1281

    [21] B. J. Ahn, T. S. Kim, Y. Q. Dong et al.. Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes[J]. Appl. Phys. Lett., 2012, 100(3): 031905

    [22] J. Cho, E. Yoon, Y. Park et al.. Characteristics of blue and ultraviolet light-emitting diodes with current dendity and temperature[J]. Electron. Mater. Lett., 2010, 6(12): 51~53

    [23] S. H. Park, S. L. Chuang. Comparison of zinc-blende and wurzite GaN semiconductors with spontaneous polarization and piezoelectric field effects[J]. J. Appl. Phys., 2000, 87(1): 353~364

    [24] J. J. Shi, Z. Z. Gan. Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots[J]. J. Appl. Phys., 2003, 94(1): 407~415

    [25] A. David, M. J. Grundmann. lnfluence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes[J]. Appl. Phys. Lett., 2010, 97(3): 033501

    [26] H. W. Jang, J. H. Lee, J. L. Lee. Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical-vapor deposition[J]. Appl. Phys. Lett., 2002, 80(21): 3955~3957

    [27] M. H. Kim, M. F. Schubert, Q. Dai et al.. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Appl. Phys. Lett., 2007, 91(18): 183507

    [28] Y. L. Li, Y. R. Huang, Y. H. Lai. Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness[J]. Appl. Phys. Lett., 2007, 91(18): 181113

    [29] C. W. Liu, W. N. Wang, P. A. Shields et al.. Improvement of efficiency droop in resonance tunneling LEDs[C]. SPIE, 2008, 7058: 70580D

    [30] M. F. Schubert, J. Xu, J. K. Kim et al.. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop[J]. Appl. Phys. Lett., 2008, 93(4): 041102

    [31] S. H. Han, D. Y. Lee, H. W. Shim et al.. Improvement of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal wells[J]. J. Phys. D: Appl. Phys., 2010, 43(35): 354004

    [32] Y. H. Sun, Y. W. Cheng, S.C. Wang et al.. Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-type GaN surface texturing[J]. IEEE Electron Device Lett., 2011, 32(2): 182~184

    [33] C. H. Chiu, D. W. Lin, C. C. Lin et al.. Reduction of efficiency droop in semipolar (1101) InGaN/GaN light-emitting diodes grown on patterned silicon substrates[J]. Appl. Phys. Express, 2011, 4(10): 012105

    [34] Y. Zhao, J. Sonoda, C. C. Pan et al.. 30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique[J]. Appl. Phys. Express, 2010, 3(10): 102101

    [35] S. Yamamoto, Y. Zhao, C. C. Pan et al.. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (2021)GaN substrates[J]. Appl. Phys. Express, 2010, 3(12): 122102

    [36] A. Tyagi, H. Zhong, N. N. Fellowes et al.. High brightness violet InGaN/GaN light emitting diodes on smipolar bulk GaN substrates\[J\]. Jpn. J. Appl. Phys., 2007, 46: 129~131

    [37] Y. Zhao, S. Tanaka, C. C. Pan et al.. High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2[J]. Appl. Phys. Express, 2011, 4(8): 08210

    [38] S. P. Chang, T. C. Lu, L. F. Zhuo et al.. Low droop nonpolar GaN/InGaN light emitting diodes grown on m-plane GaN substrate[J]. J. Electrochem. Soc., 2010, 157(5): H501~H503

    [39] C. C. Pan, S. Tanaka, F. Wu et al.. High power, low efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes[J]. Appl. Phys. Express, 2012, 5(6): 062103

    [40] J. Lee, X. Li, U. Ozgur et al.. On carrier spillover in c- and m-plane InGaN light emitting diodes[J]. Appl. Phys. Lett., 2009, 95(20): 201113

    [41] S. C. Ling, T. C. Lu, S. P. Chang et al.. Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes[J]. Appl. Phys. Lett., 2010, 96(23): 231101

    [42] H. Masui, S. Nakamura, S. P. DenBaars. Nonpolar and semipolar Ⅲ-nitride light-emitting diodes: achievements and challenges[J]. IEEE Trans. Electron Devices, 2010, 57(1): 88~100

    [43] S. H. Han, D.Y. Lee, S. J. Lee et al.. Effect of electron blocking layer on efficincy droop in InGaN/GaN multiple quantum well light-emitting diodes[J]. Appl. Phys. Lett., 2009, 94(23): 231123

    [44] S. H. Han, C. Y. Cho, S. J. Lee et al.. Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes[J]. Appl. Phys. Lett., 2010, 96(5): 051113

    [45] S. J. Lee, S. H. Han, C. Y. Cho et al.. Improvement of GaN-based light-emitting diodes using p-type AlGaN/GaN superlattices with a graded Al composition[J]. J. Physics D: Appl. Phys., 2011, 44(10): 105101

    [46] X. Ni, X. Li, J. Xie et al.. Reduction of efficiency droop in InGaN-based blue LEDs[C]. SPIE, 2009, 7216: 72161W

    [47] L. B. Chang, M. J. Lai, Ray-Ming Lin et al.. Effect of electron leakage on efficiency droop in wide-well InGaN-based light-emitting diodes[J]. Appl. Phys. Express, 2011, 4(1): 012106

    [48] D. A. Zakheim, A. S. Pavluchenko, D. A. Bauman. Blue LEDs: way to overcome efficiency droop[J]. Phys. Stat. Sol. C, 2011, 8(1-7): 2340~2344

    [49] D. Zhu, A. N. Noemaun, M. F. Schubert et al.. Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping[J]. Appl. Phys. Express, 2010, 96: 121110

    [50] H. P. Zhao, G. Y. Liu, R. A. Arif et al.. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes[J]. Solid-State Electron., 2010, 54: 1119~1124

    [51] Y. J. Lee, C. H. Chen, C. J. Lee. Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells[J]. IEEE Photon. Technol. Lett., 2010, 22(20): 1506~1508

    [52] L. Y. Chen, Y. Y. Huang, C. S. Chang et al.. High output power density and low leakage current of InGaN/GaN nanorod light emitting diodes with mechanical polishing process[J]. CS MANTECH Conference, 2010, 251~254

    [53] J. Hader, J. V. Moloney, S. W. Koch. Temperature-dependence of the internal efficiency droop in GaN-based diodes[J]. Appl. Phys. Express, 2011, 99(18): 181127

    [54] T. Doan, C. Tran, C. Chu et al.. Vertical GaN based light emitting diodes on metal alloy substrate boosts high power LED performance[C]. SPIE, 2007, 6669: 666903

    [55] M. L. Lin, Z. Q. Ye, M. S. Lei. Efficiency droop in blue InGaN/GaN single-quantum-well light-emitting diodes on the Si substrate[J].Semicond. Sci. Technol., 2012, 27(4): 045010

    [56] C. L. Chao, R. Xuan, H. Hsuan et al.. Reduction of efficiency droop in InGaN light-emitting diodes grown on self-separated freestanding GaN substrates[J]. IEEE Photon. Technol. Lett., 2011, 23(12): 798~780

    [57] D. S. Meyaard, Q. F. Shan, J. Cho et al.. Temperature dependent efficiency droop in InGaN light-emitting diodes with different current densities[J]. Appl. Phys. Lett., 2012, 100(8): 081106

    [58] Y. Y. Kudryk, A. K. Tkachenko, A. V. Zinouchuk. Temperature-dependent efficiency droop in InGaN-based light-emitting diodes induced by current crowding[J]. Semicond. Sci. Technol., 2012, 27(5): 055013

    Wang Yanming, Xu Linwei, Tan Jian, Xu Yabing. Research Progress in Droop Effect of InGaN-Based Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2012, 49(12): 120002
    Download Citation