• Acta Optica Sinica
  • Vol. 36, Issue 10, 1028002 (2016)
Zhao Zongze* and Zhang Yongjun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.1028002 Cite this Article Set citation alerts
    Zhao Zongze, Zhang Yongjun. Building Extraction from Airborne Laser Point Cloud Using NDVI Constrained Watershed Algorithm[J]. Acta Optica Sinica, 2016, 36(10): 1028002 Copy Citation Text show less
    References

    [1] Lin C, Nevatia R. Building detection and description from a single intensity image[J]. Computer Vision and Image Understanding, 1998, 72(2): 101-121.

    [2] Mayer H. Automatic object extraction from aerial imagery - a survey focusing on buildings[J]. Computer Vision and Image Understanding, 1999, 74(2): 138-149.

    [3] Baltsavias E P. A comparison between photogrammetry and laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3): 83-94.

    [4] Zhang Y, Shen X. Direct georeferencing of airborne LiDAR data in national coordinates[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 84: 43-51.

    [5] Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33: 110-117.

    [6] Zhang K, Chen S C, Whitman D, et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872-882.

    [7] Li Y, Wu H Y, Xu H W, et al. A gradient-constrained morphological filtering algorithm for airborne LiDAR[J]. Optics & Laser Technology, 2013, 54: 288-296.

    [8] Lai Xudong, Wan Youchuan. The study of the edge detection to the depth-image of light detection and ranging[J]. Laser & Infrared, 2005, 35(6): 444-446.

    [9] Xuan Hejun, Miao Qiguang, Liu Ruyi, et al. A novel algorithm based on triangulated irregular network for edge detection from LiDAR data[J]. Acta Optica Sinica, 2014, 34(12): 1228002.

    [10] He Peipei, Wan Youchuan, Yang Wei, et al. Automatic registration of urban laser point cloud with aerial image data based on straight-lines[J]. Acta Optica Sinica, 2015, 35(5): 0528001.

    [11] Andersen H E, McGaughey R J, Reutebuch S E. Estimating forest canopy fuel parameters using LIDAR data[J]. Remote Sensing of Environment, 2005, 94(4): 441-449.

    [12] Zhao K G, Popescu S C, Meng X L, et al. Characterizing forest canopy structure with lidar composite metrics and machine learning[J]. Remote Sensing of Environment, 2011, 115(8): 1978-1996.

    [13] Li Feng, Wu Yanxiong, Wei Aixia, et al. Review of reconstruction of 3-D building models based on airborne lidar[J]. Laser Technology, 2015, 39(1): 23-27.

    [14] Ekhtari N, Zoej M H V, Sahebi M R, et al. Automatic building extraction from LIDAR digital elevation models and WorldView imagery[J]. Journal of Applied Remote Sensing, 2009, 3(1): 033571.

    [15] Hao Ming, Shi Wenzhong, Zhang Hua. A method to extract buildings automatically based on LiDAR data[J]. Bulletin of Surveying and Mapping, 2014(4): 82-85.

    [16] Fan Shijun, Zhang Aiwu, Hu Shaoxing, et al. A method of classification for airborne full waveform LiDAR data based on random forest[J]. Chinese J Lasers, 2013, 40(9): 0914001.

    [17] Yang B S, Xu W X, Dong Z. Automated extraction of building outlines from airborne laser scanning point clouds[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1399-1403.

    [18] Mongus D, Lukacˇ N, alik B. Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 145-156.

    [19] Niemeyer J, Rottensteiner F, Soergel U. Contextual classification of LiDAR data and building object detection in urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87: 152-165.

    [20] Vincent L, Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.

    [21] Grau V, Mewes A U, Alcaiz M, et al. Improved watershed transform for medical image segmentation using prior information[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 447-458.

    [22] Osma-Ruiz V, Godino-Llorente J I, Sáenz-Lechón N, et al. An improved watershed algorithm based on efficient computation of shortest paths[J]. Pattern Recognition, 2007, 40(3): 1078-1090.

    [23] Li Y, Zhu L, Gong P, et al. A refined marker controlled watershed for building extraction from DSM and imagery[J]. International Journal of Remote Sensing, 2010, 31(6): 1441-1452.

    [24] Soille P. Morphological image analysis: Principles and applications[M]. Berlin: Springer Science & Business Media, 2013.

    [25] Beucher S, Lantuéjoul C. Use of watersheds in contour detection[C]. International Workshop on Image Processing, Real-Time Edge and Motion Detection, 1979.

    [26] Beucher S. Watersheds of functions and picture segmentation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1982, 7: 1928-1931.

    [27] Rambabu C, Chakrabarti I, Ghosh D. An efficient watershed transform computation method[C]. Proceedings of the 2003 Joint Conference of the 4th International Conference on Information, Communications and Signal Processing, 2003, 2: 792-796.

    [28] Chien S Y, Huang Y W, Chen L G. Predictive watershed: A fast watershed algorithm for video segmentation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(5): 453-461.

    [29] Thiran J P, Warscotte V, Macq B. A queue-based region growing algorithm for accurate segmentation of multi-dimensional digital images[J]. Signal Processing, 1997, 60(1): 1-10.

    [30] Bleau A, Leon L J. Watershed-based segmentation and region merging[J]. Computer Vision and Image Understanding, 2000, 77(3): 317-370.

    [31] Bieniek A, Moga A. An efficient watershed algorithm based on connected components[J]. Pattern Recognition, 2000, 33(6): 907-916.

    [32] Sun H, Yang J, Ren M. A fast watershed algorithm based on chain code and its application in image segmentation[J]. Pattern Recognition Letters, 2005, 26(9): 1266-1274.

    [33] Filin S, Pfeifer N. Neighborhood systems for airborne laser data[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(6): 743-755.

    [34] Chen Q, Gong P, Baldocchi D, et al. Filtering airborne laser scanning data with morphological methods[J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(2): 175-185.

    [35] Shao Y C, Chen L C. Automated searching of ground points from airborne lidar data using a climbing and sliding method[J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(5): 625-635.

    [36] Meng X L, Wang L, Silván-Cárdenas J L, et al. A multi-directional ground filtering algorithm for airborne LIDAR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1): 117-124.

    [37] Liu C J, Li J, Zhang S F, et al. A point clouds filtering algorithm based on grid partition and moving least squares[J]. Procedia Engineering, 2012, 28: 476-482.

    [38] Meng X L, Currit N, Wang L. Morphology-based building detection from airborne lidar data[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(4): 437-442.

    [39] Kabolizade M, Ebadi H, Ahmadi S. An improved snake model for automatic extraction of buildings from urban aerial images and LiDAR data[J]. Computers, Environment and Urban Systems, 2010, 34(5): 435-441.

    [40] Kraus K, Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53(4): 193-203.

    [41] Isaac E J, Singleton R C. Sorting by address calculation[J]. Journal of the ACM, 1956, 3(3): 169-174.

    [42] Lee D H, Lee K M, Lee S U. Fusion of lidar and imagery for reliable building extraction[J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(2): 215-225.

    [43] Zhu L, Shortridge A M, Lusch D. Conflating LiDAR data and multispectral imagery for efficient building detection[J]. Journal of Applied Remote Sensing, 2012, 6(1): 063602.

    [44] Rutzinger M, Rottensteiner F, Pfeifer N. A comparison of evaluation techniques for building extraction from airborne laser scanning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(1): 11-20.

    [45] ISPRS test project on urban classification and 3D building reconstruction: Results[EB/OL]. [2016-02-20] http://www2.isprs.org/commissions/comm3/wg4/results.html.

    CLP Journals

    [1] Zhenyang Hui, Penggen Cheng, Yunlan Guan, Yunju Nie. Review on Airborne LiDAR Point Cloud Filtering[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060001

    [2] Lei Zhao, Xi Xiaohuan, Wang Cheng, Wang Pu, Wang Yongxing, Yin Guoqing. Building Point Clouds Extraction from Airborne LiDAR Data Based on Decision Tree Method[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82803

    [3] Li Yan, Feng Wei. Single Part of Building Extraction from Dense Matching Point Cloud[J]. Chinese Journal of Lasers, 2018, 45(7): 0710004

    [4] Zhenyang Hui, Youjian Hu, Yanfei Kang. Road Point Cloud Extraction Algorithm Based on Reflection Intensity Skewness Balancing[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022801

    Zhao Zongze, Zhang Yongjun. Building Extraction from Airborne Laser Point Cloud Using NDVI Constrained Watershed Algorithm[J]. Acta Optica Sinica, 2016, 36(10): 1028002
    Download Citation