• Acta Optica Sinica
  • Vol. 41, Issue 6, 0611001 (2021)
Zhenyang Ding*, Tianduo Lai, Kuiyuan Tao, Yanan Zhu, Fengyu Zhu, Qingrui Li, Mingjian Shang, Jingqi Hu, Keliang Sun, Kun Liu, Junfeng Jiang, and Tiegen Liu
Author Affiliations
  • School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin Optical Fiber Sensing Engineering Center, Tianjin 300072, China
  • show less
    DOI: 10.3788/AOS202141.0611001 Cite this Article Set citation alerts
    Zhenyang Ding, Tianduo Lai, Kuiyuan Tao, Yanan Zhu, Fengyu Zhu, Qingrui Li, Mingjian Shang, Jingqi Hu, Keliang Sun, Kun Liu, Junfeng Jiang, Tiegen Liu. Dual-State Numerical Dispersion Compensation Method for Catheter Based PS-OCT System[J]. Acta Optica Sinica, 2021, 41(6): 0611001 Copy Citation Text show less
    References

    [1] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995). http://www.sciencedirect.com/science/article/pii/003040189500119S

    [3] Gao Y, Li Z L, Zhang J H et al. Automatic measurement method for corneal thickness of optical coherence tomography images[J]. Acta Optica Sinica, 39, 0311003(2019).

    [4] Hou F, Yang Z H, Gu W Q et al. Intraoperative three-dimensional imaging of neck tissues based on optical coherence tomography[J]. Acta Optica Sinica, 39, 0117001(2019).

    [5] Shen R Q, Wang L, Xu M E et al. Characterization of cell distribution based on optical coherence tomography scattering[J]. Chinese Journal of Lasers, 47, 0207039(2020).

    [6] Ha Usler G, Lindner M W. “Coherence radar” and “spectral radar”: new tools for dermatological diagnosis[J]. Journal of Biomedical Optics, 3, 21-31(1998). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JBOPFO000003000001000021000001&idtype=cvips&gifs=Yes

    [7] Wojtkowski M, Leitgeb R, Kowalczyk A et al. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 7, 457-463(2002). http://biomedicaloptics.spiedigitallibrary.org/mobile/article.aspx?articleid=1101514

    [8] Nassif N A, Cense B, Park B H et al. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve[J]. Optics Express, 12, 367-376(2004). http://europepmc.org/abstract/MED/19474832

    [9] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997).

    [10] Golubovic B, Bouma B E, Tearney G J et al. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+: Forsterite laser[J]. Optics Letters, 22, 1704-1706(1997).

    [11] Yun S H. Tearney G J, de Boer J F, et al. High-speed optical frequency-domain imaging[J]. Optics Express, 11, 2953-2963(2003).

    [12] Bouma B, Tearney G J, Boppart S A et al. High-resolution optical coherence tomographic imaging using a mode-locked Ti∶Al2O3 laser source[J]. Optics Letters, 20, 1486-1488(1995). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-20-13-1486

    [13] Drexler W, Morgner U, Kärtner F X et al. In vivo ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 24, 1221-1223(1999). http://europepmc.org/abstract/MED/18073990

    [14] Drexler W, Morgner U, Ghanta R K et al. Ultrahigh-resolution ophthalmic optical coherence tomography[J]. Nature Medicine, 7, 502-507(2001).

    [15] Tearney G J, Bouma B E, Fujimoto J G. High-speed phase- and group-delay scanning with a grating-based phase control delay line[J]. Optics Letters, 22, 1811-1813(1997).

    [16] Iyer S, Coen S, Vanholsbeeck F. Dual-fiber stretcher as a tunable dispersion compensator for an all-fiber optical coherence tomography system[J]. Optics Letters, 34, 2903-2905(2009). http://europepmc.org/abstract/MED/19794762

    [17] Wojtkowski M, Srinivasan V J, Ko T H et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Optics Express, 12, 2404-2422(2004). http://www.ncbi.nlm.nih.gov/pubmed/19475077

    [18] Tearney G J, Boppart S A, Bouma B E et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography[J]. Optics Letters, 21, 543-545(1996).

    [19] Tearney G J, Brezinski M E, Boppart S A et al. Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery[J]. Circulation, 94, 3013(1996).

    [20] Tearney G J. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 276, 2037-2039(1997). http://eurheartj.oxfordjournals.org/lookup/ijlink?linkType=ABST&journalCode=sci&resid=276/5321/2037&atom=%2Fehj%2F31%2F13%2F1608.atom

    [21] Fujimoto J G, Boppart S A, Tearney G J et al. High resolution in vivo intra-arterial imaging with optical coherence tomography[J]. Heart, 82, 128-133(1999).

    [22] Bouma B E, Tearney G J, Compton C C et al. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography[J]. Gastrointestinal Endoscopy, 51, 467-474(2000).

    [23] Jang I K, Bouma B E, Kang D H et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound[J]. Journal of the American College of Cardiology, 39, 604-609(2002).

    [24] Villiger M, Karanasos A, Ren J et al. First clinical pilot study with intravascular polarization sensitive optical coherence tomography[J]. Proceedings of SPIE, 9689, 96892O(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2522176

    [25] Karanasos A, Villiger M et al. First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo[J]. European Heart Journal, 37, 1932(2016).

    [26] Bouma B E, Villiger M, Otsuka K et al. Intravascular optical coherence tomography[J]. Biomedical Optics Express, 8, 2660-2686(2017).

    [27] Villiger M, Otsuka K, Karanasos A et al. Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging[J]. JACC: Cardiovascular Imaging, 11, 1666-1676(2018).

    [28] Villiger M, Otsuka K, Karanasos A et al. Repeatability assessment of intravascular polarimetry in patients[J]. IEEE Transactions on Medical Imaging, 37, 1618-1625(2018). http://www.ncbi.nlm.nih.gov/pubmed/29969412

    [29] Otsuka K, Villiger M, Karanasos A et al. Intravascular polarimetry characterizes plaque composition and instability in patients with coronary artery disease[J]. Journal of the American College of Cardiology, 73, 72(2019). http://www.sciencedirect.com/science/article/pii/S0735109719306813

    [30] Libby P. Mechanisms of acute coronary syndromes and their implications for therapy[J]. The New England Journal of Medicine, 368, 2004-2013(2013). http://europepmc.org/abstract/med/23697515

    [31] de Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography: a review[J]. Biomedical Optics Express, 8, 1838-1873(2017). http://europepmc.org/abstract/pmc/pmc5480584

    [32] Oh W Y, Yun S H, Vakoc B J et al. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing[J]. Optics Express, 16, 1096-1103(2008).

    [33] Guo S G, Zhang J, Jung W et al. Depth-resolved birefringence and differential optical axis orientation measurements using fiber-based polarization-sensitive optical coherence tomography[J]. Proceedings of SPIE, 5316, 285-290(2004). http://www.zhangqiaokeyan.com/academic-conference-foreign_conference-coherence-domain-optical-methods_thesis/020512217596.html

    [34] Baumann B, Choi W, Potsaid B et al. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit[J]. Optics Express, 20, 10229-10241(2012).

    [35] Tao K Y, Sun K L, Ding Z Y et al. Catheter-based polarization sensitive optical coherence tomography using similar mueller matrix method[J]. IEEE Transactions on Biomedical Engineering, 67, 60-68(2020). http://www.ncbi.nlm.nih.gov/pubmed/30932827

    [36] Naganuma K, Mogi K, Yamada H. Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light[J]. Optics Letters, 15, 393-395(1990). http://www.ncbi.nlm.nih.gov/pubmed/19767954

    [37] Villiger M, Karanasos A, Ren J et al. Intravascular polarization sensitive optical coherence tomography in human patients[C]∥2016 Conference on Lasers and Electro-Optics (CLEO), June 5-10, 2016, San Jose, CA, USA., 1-2(2016).

    Zhenyang Ding, Tianduo Lai, Kuiyuan Tao, Yanan Zhu, Fengyu Zhu, Qingrui Li, Mingjian Shang, Jingqi Hu, Keliang Sun, Kun Liu, Junfeng Jiang, Tiegen Liu. Dual-State Numerical Dispersion Compensation Method for Catheter Based PS-OCT System[J]. Acta Optica Sinica, 2021, 41(6): 0611001
    Download Citation