• Opto-Electronic Advances
  • Vol. 2, Issue 2, 180020 (2019)
Huanhuan Liu, Ye Yu, Wei Song, Qiao Jiang, and Fufei Pang
Author Affiliations
  • Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.29026/oea.2019.180020 Cite this Article
    Huanhuan Liu, Ye Yu, Wei Song, Qiao Jiang, Fufei Pang. Recent development of flat supercontinuum generation in specialty optical fibers[J]. Opto-Electronic Advances, 2019, 2(2): 180020 Copy Citation Text show less
    References

    [1] F Théberge, N Bérubé, S Poulain, S Cozic, L R Robichaud et al. Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers. Photonics Res, 6, 609-613(2018).

    [2] D Klimentov, N Tolstik, V V Dvoyrin, R Richter, I T Sorokina. Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 μm. J Lightwave Technol, 34, 4847-4855(2016).

    [3] K Yin, B Zhang, L Y Yang, J Hou. 15.2 W spectrally flat all-fiber supercontinuum laser source with > 1  W power beyond 3.8 μm. Opt Lett, 42, 2334-2337(2017).

    [4] L Y Yang, B Zhang, K Yin, T Y Wu, Y J Zhao et al. Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3 μm. Photonics Res, 6, 417-421(2018).

    [5] H H Liu, K K Chow. Amplified spontaneous emission pulses for high-power supercontinuum generation. J Eng, 3, 29-31(2016).

    [6] T Liang, X M Feng. Research progress toward flat supercontinuum generation in fibers. Laser Optoelectron Prog, 53, 060002(2016).

    [7] J Hou, S P Chen, Z L Chen, Z F Wang, B Zhang et al. Recent developments and key technology analysis of high power supercontinuum source. Laser Optoelectron Prog, 50, 080010(2013).

    [8] Yang W Q. The study on high-power all-fiber mid-infrared supercontinuum generation (National University of Defense Technology, Changsha, China, 2014).YangW QYang W Q. The study on high-power all-fiber mid-infrared supercontinuum generation (National University of Defense Technology, Changsha, China, 2014)

    [9] C Lin, R H Stolen. New nanosecond continuum for excited-state spectroscopy. Appl Phys Lett, 28, 216-218(1976).

    [10] J Swiderski. High-power mid-infrared supercontinuum sources: current status and future perspectives. Prog Quantum Electron, 38, 189-235(2014).

    [11] J C Gauthier, L R Robichaud, V Fortin, R Vallée, M Bernier. Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives. Appl Phys B, 124, 122(2018).

    [12] J M Dudley, G Genty, S Coen. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys, 78, 1135-1184(2006).

    [13] G Genty, S Coen, J M Dudley. Fiber supercontinuum sources (Invited). J Opt Soc Am B, 24, 1771-1785(2007).

    [14] Agrawal G P. Nonlinear Fiber Optics (World Publishing Corporation, Beijing, China, 2009).AgrawalG PNonlinear Fiber Optics (World Publishing Corporation, Beijing, China, 2009)

    [15] M Michalska, J Mikolajczyk, J Wojtas, J Swiderski. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses. Sci Rep, 6, 39138(2016).

    [16] A Kudlinski, A K George, J C Knight, J C Travers, A B Rulkov et al. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Opt Express, 14, 5715-5722(2006).

    [17] B A Cumberland, J C Travers, S V Popov, J R Taylor. 29 W High power CW supercontinuum source. Opt Express, 16, 5954-5962(2008).

    [18] C Y Guo, S C Ruan, P G Yan, E M Pan, H F Wei. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser. Opt Express, 18, 11046-11051(2010).

    [19] A M Heidt. Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J Opt Soc Am B, 27, 550-559(2010).

    [20] A M Heidt, A Hartung, G W Bosman, P Krok, E G Rohwer et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt Express, 19, 3775-3787(2011).

    [21] C L Huang, M S Liao, W J Bi, X Li, L L Hu et al. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion. Photonics Res, 6, 601-608(2018).

    [22] K Liu, J Liu, H X Shi, F Z Tan, P Wang. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power. Opt Express, 22, 24384-24391(2014).

    [23] M Michalska, P Hlubina, J Swiderski. Mid-infrared supercontinuum generation to ~4.7 μm in a ZBLAN fiber pumped by an optical parametric generator. IEEE Photonics J, 9, 3200207(2017).

    [24] T L Cheng, K Nagasaka, T H Tuan, X J Xue, M Matsumoto et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1   μm in a chalcogenide step-index fiber. Opt Lett, 441, 2117-2120(2016).

    [25] R R Gattass, L B Shaw, V Q Nguyen, P C Pureza, I D Aggarwal et al. All-fiber chalcogenide-based mid-infrared supercontinuum source. Opt Fiber Technol, 18, 345-348(2012).

    [26] C R Petersen, U M ller, I Kubat, B B Zhou, S Dupont et al. Dupont S et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photonics, 8, 830-834(2014).

    [27] Z M Zhao, B Wu, X S Wang, Z H Pan, Z J Liu et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev, 11, 1700005(2017).

    [28] W Q Yang, B Zhang, K Yin, X F Zhou, J Hou. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system. Opt Express, 21, 19732-19742(2013).

    [29] C L Hagen, J W Walewski, S T Sanders. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source. IEEE Photonics Technol Lett, 18, 91-93(2006).

    [30] C A Xia, M Kumar, O P Kulkarni, M N Islam, F L Terry et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping. Opt Lett, 31, 2553-2555(2006).

    [31] G S Qin, X Yan, C Kito, M S Liao, C Chaudhari et al. Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. Appl Phys Lett, 95, 161103(2010).

    [32] P M Moselund, C Petersen, L Leick, J S Dam, P Tidemand-Lichtenberg et al. Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 µm used for nanosecond mid-IR spectroscopy. Adv Solid State Lasers, 97(2013).

    [33] F Théberge, J F Daigle, D Vincent, P Mathieu, J Fortin et al. Mid-infrared supercontinuum generation in fluoroindate fiber. Opt Lett, 38, 4683-4685(2013).

    [34] Liu S. Study on the transmission characteristics of non-silica soft glass multi-core photonic crystal fiber (Yanshan University, Qinhuangdao, China, 2012).LiuSStudy on the transmission characteristics of non-silica soft glass multi-core photonic crystal fiber (Yanshan University, Qinhuangdao, China, 2012)

    [35] M S Liao, W Q Gao, T L Cheng, Z C Duan, X J Duan et al. Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber. Opt Express, 20, B574-B580(2012).

    [36] M Klimczak, B Siwicki, P Skibiński, D Pysz, R Stępień et al. Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion. Opt Express, 22, 18824-18832(2014).

    [37] X Jiang, N Y Joly, M A Finger, F Babic, G K L Wong et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat Photonics, 9, 133-139(2015).

    [38] M Diouf, A B Salem, R Cherif, H Saghaei, A Wague. Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl Opt, 56, 163-169(2017).

    [39] J M Dudley, J R Taylor. Ten years of nonlinear optics in photonic crystal fibre. Nat Photonics, 3, 85-90(2009).

    [40] A Kudlinski, A Mussot. Optimization of continuous-wave supercontinuum generation. Opt Fiber Technol, 18, 322-326(2012).

    [41] K Yin, B Zhang, L Y Yang, J Hou. 30 W monolithic 2-3 μm supercontinuum laser. Photonics Res, 6, 123-126(2018).

    [42] K Yin, B Zhang, J M Yao, L Y Yang, G C Liu et al. 1.9-3.6 μm supercontinuum generation in a very short highly nonlinear Germania fiber with a high mid-infrared power ratio. Opt Lett, 41, 5067-5070(2016).

    [43] V A Kamynin, A S Kurkov, V M Mashinsky. Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber. Laser Phys Lett, 9, 219-222(2012).

    [44] C C Wang, M H Wang, J Wu. Heavily germanium-doped silica fiber with a flat normal dispersion profile. IEEE Photonics J, 7, 7101110(2015).

    [45] L Y Yang, B Zhang, K Yin, J M Yao, G C Liu et al. 0.6-3.2 μm supercontinuum generation in a step-index Germania-core fiber using a 4.4 kW peak-power pump laser. Opt Express, 24, 12600-12606(2016).

    [46] L Zhu, L L Wang, X Y Dong, P Shen, H B Su. Mid-Infrared supercontinuum generation with highly germanium-doped silica fiber. Acta Opt Sin, 36, 173-177(2016).

    Huanhuan Liu, Ye Yu, Wei Song, Qiao Jiang, Fufei Pang. Recent development of flat supercontinuum generation in specialty optical fibers[J]. Opto-Electronic Advances, 2019, 2(2): 180020
    Download Citation