• Laser & Optoelectronics Progress
  • Vol. 59, Issue 18, 1815018 (2022)
Fubin Wang1, Rui Wang1、*, and Chen Wu2
Author Affiliations
  • 1College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei , China
  • 2Tang Steel International Engineering Technology Co., Ltd., Tangshan 063000, Hebei , China
  • show less
    DOI: 10.3788/LOP202259.1815018 Cite this Article Set citation alerts
    Fubin Wang, Rui Wang, Chen Wu. Short-Term Prediction of Sintering State Based on Improved Random Forest[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1815018 Copy Citation Text show less
    Flow chart of random forest algorithm
    Fig. 1. Flow chart of random forest algorithm
    Pretreatment process
    Fig. 2. Pretreatment process
    Geometric features
    Fig. 3. Geometric features
    Relationship between classification accuracy and number of decision trees
    Fig. 4. Relationship between classification accuracy and number of decision trees
    Performance analysis of conventional random forest
    Fig. 5. Performance analysis of conventional random forest
    Performance analysis of improved random forest (K-means)
    Fig. 6. Performance analysis of improved random forest (K-means)
    Performance analysis of improved random forest(FCM)
    Fig. 7. Performance analysis of improved random forest(FCM)
    CategoryNormal burningUnderburningOverheatingSum
    Quantity1408080300
    Table 1. Number of categories
    Geometric featureAreaMajorMinorEccentricityOrientation
    Accuracy0.490.420.640.470.59
    Geometric featureEquiv diameterSolidityExtentPerimeterThinness ratio
    Accuracy0.510.350.510.470.37
    Table 2. Accuracy of K-means
    Geometric featureAreaMajorMinorEccentricityOrientation
    Accuracy0.510.430.640.50.64
    Geometric featureEquiv diameterSolidityExtentPerimeterThinness ratio
    Accuracy0.510.480.390.470.46
    Table 3. Accuracy of FCM
    Geometric featureAreaMajorMinorEccentricityOrientation
    Probability0.10.090.130.10.12
    Geometric featureEquiv diameterSolidityExtentPerimeterThinness ratio
    Probability0.110.070.110.090.08
    Table 4. K-means geometric feature probability
    Geometric featureAreaMajorMinorEccentricityOrientation
    Probability0.10.080.130.10.13
    Geometric featureEquiv diameterSolidityExtentPerimeterThinness ratio
    Probability0.10.10.080.090.09
    Table 5. FCM geometric feature probability
    MethodNormal burningUnderburningOverheating

    method

    Conventional

    85.7191.6791.67
    SVM(RBF kernel function)95.2491.6791.67
    Improvement(K-means)97.6295.83100
    Improvement(FCM)97.5610095.83
    Table 6. Accuracy of improved random forest algorithm for three categories of images
    MethodNormal burningUnderburningOverheating
    Conventional method94.7481.4888
    SVM(RBF kernel function)97.568891.67
    Improvement(K-means)97.6295.83100
    Improvement(FCM)97.5692.31100
    Table 7. Recall of improved random forest algorithm for three categories of images
    MethodAccuracy /%Precision /%Recall /%F1 value /%
    Conventional method88.8989.6888.0788.87
    SVM(RBF kernel function)93.333392.8692.4192.63
    Improvement(K-means)97.7897.8297.8297.82
    Improvement(FCM)96.6797.8096.6297.21
    Table 8. Comparison of overall result
    Fubin Wang, Rui Wang, Chen Wu. Short-Term Prediction of Sintering State Based on Improved Random Forest[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1815018
    Download Citation