• Photonics Research
  • Vol. 11, Issue 6, 1038 (2023)
Xuyu Zhang1,2,†, Shengfu Cheng3,4,†, Jingjing Gao2,5, Yu Gan2,5..., Chunyuan Song2,5, Dawei Zhang1,8, Songlin Zhuang1, Shensheng Han2,5,6, Puxiang Lai3,4,7,9 and Honglin Liu2,4,5,*|Show fewer author(s)
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
  • 4Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
  • 5Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 6Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 7Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China
  • 8e-mail: dwzhang@usst.edu.cn
  • 9e-mail: puxiang.lai@polyu.edu.hk
  • show less
    DOI: 10.1364/PRJ.490125 Cite this Article Set citation alerts
    Xuyu Zhang, Shengfu Cheng, Jingjing Gao, Yu Gan, Chunyuan Song, Dawei Zhang, Songlin Zhuang, Shensheng Han, Puxiang Lai, Honglin Liu, "Physical origin and boundary of scalable imaging through scattering media: a deep learning-based exploration," Photonics Res. 11, 1038 (2023) Copy Citation Text show less
    References

    [1] S. Rotter, S. Gigan. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys., 89, 015005(2017).

    [2] J. Bertolotti, O. Katz. Imaging in complex media. Nat. Phys., 18, 1008-1017(2022).

    [3] Z. Yu, H. Li, T. Zhong, J.-H. Park, S. Cheng, C. M. Woo, Q. Zhao, J. Yao, Y. Zhou, X. Huang, W. Pang, H. Yoon, Y. Shen, H. Liu, Y. Zheng, Y. Park, L. V. Wang, P. Lai. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields. Innovation, 3, 100292(2022).

    [4] S. W. Paddock. Principles and practices of laser scanning confocal microscopy. Mol. Biotechnol., 16, 127-149(2000).

    [5] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Methods, 2, 932-940(2005).

    [6] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [7] V. Ntziachristos. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods, 7, 603-614(2010).

    [8] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [9] Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, W. Choi. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett., 107, 023902(2011).

    [10] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [11] M. Chen, H. Liu, Z. Liu, P. Lai, S. Han. Expansion of the FOV in speckle autocorrelation imaging by spatial filtering. Opt. Lett., 44, 5997-6000(2019).

    [12] H. He, X. Xie, Y. Liu, H. Liang, J. Zhou. Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method. J. Innov. Opt. Health Sci., 12, 1930005(2019).

    [13] E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, J. Lancis. Image transmission through dynamic scattering media by single-pixel photodetection. Opt. Express, 22, 16945-16955(2014).

    [14] Y.-K. Xu, W.-T. Liu, E.-F. Zhang, Q. Li, H.-Y. Dai, P.-X. Chen. Is ghost imaging intrinsically more powerful against scattering?. Opt. Express, 23, 32993-33000(2015).

    [15] Y. Luo, S. Yan, H. Li, P. Lai, Y. Zheng. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media. Photon. Res., 9, B262-B278(2021).

    [16] A. Turpin, I. Vishniakou, J. D. Seelig. Light scattering control in transmission and reflection with neural networks. Opt. Express, 26, 30911-30929(2018).

    [17] N. Borhani, E. Kakkava, C. Moser, D. Psaltis. Learning to see through multimode fibers. Optica, 5, 960-966(2018).

    [18] S. Li, M. Deng, J. Lee, A. Sinha, G. Barbastathis. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803-813(2018).

    [19] M. Lyu, H. Wang, G. Li, S. Zheng, G. Situ. Learning-based lensless imaging through optically thick scattering media. Adv. Photon., 1, 036002(2019).

    [20] S. Cheng, H. Li, Y. Luo, Y. Zheng, P. Lai. Artificial intelligence-assisted light control and computational imaging through scattering media. J. Innov. Opt. Health Sci., 12, 1930006(2019).

    [21] H. Li, Z. Yu, Q. Zhao, T. Zhong, P. Lai. Accelerating deep learning with high energy efficiency: from microchip to physical systems. Innovation, 3, 100252(2022).

    [22] H. Liu, Z. Liu, M. Chen, S. Han, L. V. Wang. Physical picture of the optical memory effect. Photon. Res., 7, 1323-1330(2019).

    [23] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [24] P. Fan, T. Zhao, L. Su. Deep learning the high variability and randomness inside multimode fibers. Opt. Express, 27, 20241-20258(2019).

    [25] S. Zhu, E. Guo, J. Gu, L. Bai, J. Han. Imaging through unknown scattering media based on physics-informed learning. Photon. Res., 9, B210-B219(2021).

    [26] W. Tahir, H. Wang, L. Tian. Adaptive 3D descattering with a dynamic synthesis network. Light Sci. Appl., 11, 42(2022).

    [27] Y. Liu, F. Tang, X. Wang, C. Peng, P. Li. Applicability of the Van Cittert–Zernike theorem in a Ronchi shearing interferometer. Appl. Opt., 61, 1464-1474(2022).

    [28] L. Deng. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process Mag., 29, 141-142(2012).

    [29] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 234-241(2015).

    [30] Y.-P. Zhao, I. Wu, C.-F. Cheng, U. Block, G.-C. Wang, T.-M. Lu. Characterization of random rough surfaces by in-plane light scattering. J. Appl. Phys., 84, 2571-2582(1998).

    Xuyu Zhang, Shengfu Cheng, Jingjing Gao, Yu Gan, Chunyuan Song, Dawei Zhang, Songlin Zhuang, Shensheng Han, Puxiang Lai, Honglin Liu, "Physical origin and boundary of scalable imaging through scattering media: a deep learning-based exploration," Photonics Res. 11, 1038 (2023)
    Download Citation