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Imaging through scattering media is valuable for many areas, such as biomedicine and communication. Recent
progress enabled by deep learning (DL) has shown superiority especially in the model generalization. However,
there is a lack of research to physically reveal the origin or define the boundary for such model scalability, which is
important for utilizing DL approaches for scalable imaging despite scattering with high confidence. In this paper,
we find the amount of the ballistic light component in the output field is the prerequisite for endowing a DL
model with generalization capability by using a “one-to-all” training strategy, which offers a physical meaning
invariance among the multisource data. The findings are supported by both experimental and simulated tests in
which the roles of scattered and ballistic components are revealed in contributing to the origin and physical
boundary of the model scalability. Experimentally, the generalization performance of the network is enhanced
by increasing the portion of ballistic photons in detection. The mechanism understanding and practical guidance
by our research are beneficial for developing DL methods for descattering with high adaptivity. © 2023 Chinese

Laser Press

https://doi.org/10.1364/PRJ.490125

1. INTRODUCTION

Light scattering within and through complex media poses great
challenges for many hotspot applications, including deep tissue
imaging, antiscattered data transmission, etc. [1–3]. For exam-
ple, biological tissues are usually optically turbid, which causes
light to diffuse rapidly and prevents high-resolution focusing
inside deep tissue. To ensure the imaging resolution, most
optical microscopes [4–6] select ballistic photons for imaging
with an imaging depth limited within an optical diffusion limit
(∼1 mm) [7]. Strong optical scattering also prevents explicit
data communication through complex media where the input
light is scrambled into a seeming random speckle pattern.
Luckily, the process is still deterministic, which allows for
the recovery of objects hidden behind scattering media.

Various methods for imaging through scattering media have
been developed over the past two decades, such as object
reconstruction via the transmission matrix (TM) [8,9], speckle
correlation imaging [10–12], and single-pixel imaging [13,14].
These methods can retrieve the object information noninva-
sively, yet encounter limitations either in field of view (FOV)
or reconstruction speed. Especially, they are all sensitive to the
TM of scattering medium and any change may lead to model
errors. Recently, deep learning (DL) approaches have been in-
troduced to invert scattering [15,16] and reconstruct an object
through complex media [17–21], showing superior recovery
quality and extended FOV than the range of optical memory
effect [22]. Initially, the DL-related studies are only applicable
to a specific diffuser and cannot adapt to varying scattering
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conditions. Later, efforts have been taken in overcoming the
speckle decorrelation and achieving highly scalable imaging
through scattering media [23–26], through optimizing the net-
work model or training strategy. Those include adopting a
“one-to-all” training strategy to enable a network learning
the statistical information of multiple diffusers [23], integrating
the prior knowledge of speckle correlation theory for physics-
informed learning [25], or proposing a dynamic synthesis net-
work (DSN) with robust 3D descattering ability [26], etc.
However, the origin of such model generalization is unclear,
and it sees limitations for thick scattering media or dynamic
scattering conditions. Currently, there is a lack of research from
the perspective of physics to reveal the origin and boundary of
the scalability of a DL model, which is important in applying
DL to scalable imaging through scattering media with high
confidence.

In this paper, we investigate how the scattering property of a
medium can influence the adaptivity of a reconstruction model.
Specifically, we find the amount of (quasi-)ballistic photons in
the output light field, which directly reflects the medium’s scat-
tering property, is closely related to the general applicability of
the model. Our findings are verified by both experimental and
simulated results. In experiment, utilizing a homemade diffuser
of relatively weak scattering, much improved adaptivity of a
reconstruction network is obtained when trained with data
sampled from different regions of the diffuser. To separately
study the influences of model training strategy and the scatter-
ing property of a diffuser, simulations are performed in which
different weights of ballistic component are tested thanks to the
adjustable phase distribution of a simulated diffuser. It is re-
vealed that the ballistic light plays a key role in the applicability
of a model to unseen diffuser (region): it is lost when there is no
ballistic component whatever training strategy is used; it is en-
hanced proportionally with increasingly larger weight of ballis-
tic light even if the network only saw one specific diffuser

(region) before. The physical origin and boundary for the gen-
eral applicability of a DL model are further clarified. In addi-
tion, our mechanism findings provide guidance for enhancing
the generalization performance of DL to scalable descattered
imaging.

2. METHODS

A. Experimental Implementation
The experimental setup is illustrated in Fig. 1. A beam from a
532 nm solid-state laser (MGL-III-532–200 mW, Changchun
New Industries Optoelectronics Tech.) is first expanded before
being collimated onto a digital micromirror device (DMD,
V-7001 VIS, ViALUX). The modulated light then illuminates
a homemade 220 grit ground glass diffuser. An iris with a
diameter of 5 mm is placed right after the diffuser, which cre-
ates a tunable window to control the region of imaging through
the diffuser. The transmitted light travels a distance before
being collected by an on-axis digital camera (DCU224M,
Thorlabs). The distances from the beam expander to the
DMD, from the DMD to the diffuser, and from the diffuser
to the camera are z1 � 15 cm, z2 � 16 cm, and z3 � 10 cm,
respectively.

According to the Van Cittert–Zernike theorem [27], the
spatial coherence length (SCL) in our diffraction imaging sys-
tem, is described by l c � λz3

D � 10.64 μm, where λ is the op-
tical wavelength and D is the aperture size of the iris. SCL
approximates the average size of speckle on the camera plane,
which was about two to three times of the pitch of the camera
pixel. To accelerate data processing, the central area of the origi-
nally acquired speckle pattern was cropped into 512 × 512 and
then down sampled into a 256 × 256 array. To quantify the
isoplanatic range, i.e., the average grain size of the diffuser, a
point source generated by 3 × 3 binning pixels on the DMD
was used to illuminate the diffuser. The diffuser was shifted

Fig. 1. Schematic of the experimental setup of imaging through a diffuser with the coordinate system labeled. The insets (a) and (b) show the
settings of imaging regions to acquire the training and test data in Tests I and II, respectively. In Test I, the training data were obtained from region A
(red circle) only with the test data from regions 1–5 (green circles). In Test II, the training data were obtained from regions A–E (red circles) with the
test data from regions 1–5 (green circles).
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horizontally with the speckle patterns recorded at each
displacement (Δx) accordingly. The cross-correlation coeffi-
cient (CCC) between the speckle pattern recorded at each po-
sition and the one at the origin (i.e., Δx � 0) was calculated.
The full width at half maximum (FWHM) of the fitted CCC
curve was used to characterize the isoplanatic range, which re-
flects the spatially variant scattering property of the imaging
system. The speckle pattern recorded with a displacement of
diffuser larger than the isoplanatic range is regarded as unrelated
to the one recorded at the origin.

In our experiment, handwritten digits from the Modified
National Institute of Standards and Technology (MNIST)
dataset [28] were used as the objects displayed on the
DMD. A U-Net model [29] was used for object reconstruction
from speckle data. Two tests were performed to validate the
effect of adapting a one-to-all network training strategy [23].
The imaging regions for the acquisition of the training and test
data in Tests I and II are indicated in the insets Figs. 1(a) and
1(b), respectively. In Test I, 20,000 pairs of training data
were acquired only at region A. Data from five different regions
were used for the network test in which region 1 overlapped
with region A and regions 2–5 were 10, 40, 100, and
5000 μm, respectively, away from region 1 along the x axis.
In Test II, 20,000 pairs of data acquired from regions A–E with
4000 pairs at each were used for network training. To test the
network, five different sampling regions were also used with
region 1 overlapping with region A, region 2 overlapping with
region B, and regions 3–5 being 40, 100, and 5000 μm, re-
spectively, away from region 2. For both Tests I and II, two
groups of untrained MNIST digit images (each has 100 images)
were selected with their corresponding speckle patterns for the
network test.

B. Simulations

1. Diffuser Model
A random phase plate was used to model the diffuser according
to the theory of light scattering from rough surfaces in which a
Gaussian height distributed surface with a Gaussian autocorre-
lation function is assumed [30]. The original simulated phase
mask has an array of 3000 × 3000 with a pitch size of 5 μm,
whereas only a segment of the array was selected as the effective
zone each time. The key parameters of the simulated phase
mask include the SCL and the standard deviation of height.
To model a 220 grit diffuser, the typical values for the two
above parameters were 36 μm and 1.6 μm, respectively.

In simulation, the weight of ballistic light (η) in the trans-
mitted light field was calculated based on the spectrum of the
simulated phase mask. Using a coefficient to control the phase
distribution range of the mask, the ratios of ballistic and scat-
tered light components were controllable. Specifically, we first
calculate the power of the ballistic light, which will correspond
to the center zero-frequency spectrum (W 0). However, there
are also a few zero-frequency components of the scattered light,
which are estimated by calculating the average of the adjacent
power spectra around the center spectrum (W 0_adj). The accu-
rate power of the ballistic light (W b) is obtained by subtracting
W 0_adj from W 0, and η is calculated as the ratio of W b to the
total power (

P
W spe),

η � W bP
W spe

� W 0 −W 0_adjP
W spe

: (1)

The capability of controlling the weight of the ballistic com-
ponent of an output light field provides much convenience in
allowing us to study the ballistic contribution to the adaptivity
of a reconstruction model.

2. Output Light Field
The light field E detected behind a scattering medium can be
regarded as a weighted superposition of the ballistic and scat-
tered light after free-space diffraction propagation,

E � α ·D�E0� � β ·D�TE0�: (2)

Here, E0 is the input light field, T represents the TM of the
medium, D�·� is the diffraction operator, and α, β are the
weighting coefficients of ballistic and scattered light fields, re-
spectively. The intensity pattern captured on the imaging plane
is as follows:

I � jE j2 � α2jD�E0�j2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
I b

� β2jD�TE0�j2 � αβ · 2RefD�E0�D��TE0�g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I s

, (3)

where jD�E0�j2 is the diffracted input pattern, jD�TE0�j2 is
the scrambled speckle pattern, and 2RefD�E0�D��TE0�g is
the cross term showing speckle appearance. Usually, the portion
of ballistic light in the output field is very weak compared to
that of the scattered light. Suppose the scattering mean free
path of the medium is l s, the transport mean free path is l t ,
the medium thickness is d (d ≫ l t > l s), the ballistic intensity
is I b ∼ exp�−d∕l s�, and the scattered intensity is I s ∼ l t∕d .
That said, the ballistic light carrying the object information
is independent of varying scattering conditions, which may re-
late to the adaptivity of a reconstruction model.

3. Simulation Settings
For a reconstruction model, it would be easy to extract object
information purely from the ballistic component, and such an
ability is also scalable to medium perturbation or generalizes to
other unknown diffuser. However, with a totally diffused out-
put light field, it would be hard for a model to be scalable if
trained with data from a specific diffuser (region). The reason is
the model can only learn the specific statistical information of
diffuser, which is not generalizable. Therefore, it is natural to
hypothesize that the portion of ballistic light in the output field
impacts the model scalability. Thanks to the tunable ratio of
ballistic component in simulation, we studied its influence
on the model adaptivity separately with two tests conducted.

Simulation I. Under the condition of no ballistic component
(η � 0), two comparative tests similar to the experimental set-
tings were involved. For Test I, the U-Net was trained with
20,000 input–output pairs captured at one diffuser region only
and tested on the data obtained from regions 1–9, which were
horizontally away from the training region by 0, 10, 35, 40,
100, 1000, 2500, 3500, and 5000 μm. For Test II, data from
five regions [also as indicated in Fig. 1(b)] with 4000 pairs at
each were used for network training. Again, the trained model
was tested on the data acquired from regions 1–9.
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Simulation II. Although only allowed to see one diffuser re-
gion, the model was trained under varying weights of ballistic
light (η � 0.1, 0.3, 0.5, 0.7, 0.9, 1). For each case, 20,000 data
from 1 region were collected to train the U-Net. Additionally,
data from six regions (with horizontal shifts of 0, 10, 35, 40,
100, and 5000 μm, respectively) were used for a network test.

For both experiment and simulation, we used the Python
programming language and Keras/TensorFlow 2.0 framework
for the construction of a U-Net model, which was running on
the environment of GPU (NVIDIA RTX 3060 laptop edition).
The size of speckle data was 256 × 256. The total number of
training epochs was 50, and the learning rate at the beginning
was set as 2 × 10−4. After five epochs, if the loss value did not
decrease, the learning rate would be adjusted to one-tenth of
the previous one until the learning rate was reduced to
2 × 10−6. When the loss value did not decrease after 10 epochs,
the training would be terminated. The averaged training dura-
tion of each epoch was 130 s.

3. RESULTS

A. Experiment Results
Figure 2 presents the results in experimental Tests I and II. A
seemly high visual similarity due to a lack of speckle details is
found for the testing speckle patterns in Fig. 2(a). This could be
attributed to the fact that the speckles were almost not ampli-
fied before being captured in our diffraction imaging system.
However, the structural similarity index measure between

the testing speckle patterns resulting from different categories
of MNIST digits is calculated to be less than 0.05, showing a
very low level of correlation. For Test I [Fig. 2(a)], the quali-
tative reconstruction results for those sampled from regions 1–5
are gradually deteriorating. Region 1 has the best quality as it
coincides with the training region, which also shows the success
of the U-Net in extracting information about unseen objects.
The reconstruction quality sees a decline at region 2 but is still
acceptable, whereas, getting much poorer at regions 3 and 4,
which are only partially “seen” by the network during training.
At region 5, the recovered image can no longer be recognized as
the network never sees that region before. By contrast, much
improved generalization ability to different regions is found for
the U-Net in Test II when adopting a one-to-all training strat-
egy. Objects can be perfectly reconstructed at regions 1 and 2,
and can still be visually recognized throughout regions 3–5
without much difference in reconstruction quality among
them. Note region 5 has no overlapping with the training re-
gions A–E, which means the network can generalize to the un-
known region. The quantitative metrics of Pearson correlation
coefficient (PCC) are plotted in Fig. 2(b) with those of Test I
declining more rapidly than those of Test II. Especially, the
average PCC for Test I drops below 0.3 when at Δx � 5 mm,
whereas, Test II sees a relatively stable level of PCC at around
0.6 when the test region shifts horizontally by 40–5000 μm.

The above comparisons validate that the generalization
capability of a reconstruction network can be considerably
improved when trained with multisource data [18]. Figure 2(c)

Fig. 2. Experimental results. (a) Image reconstruction through a homemade diffuser in Tests I and II. (b) Curves of the averaged PCC with error
bar for 10 reconstructed images at each of the test regions 1–5. Note a nonuniform abscissa is adopted to better reflect the whole trend, given the
nonuniform distributed displacements. (c) The CCC curve measured in experiment with a FWHM of ∼34 μm.
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gives the fitted CCC curve of the output light field, whose
FWHM is used to denote the isoplanatic range, measured to
be ∼34 μm. This is consistent with the fast decay of PCC at
around 40 μm displacement in Fig. 2(b). The fact that the
CCC plateaus around 0.4 suggests there is still an important
portion of ballistic light. It looks like that, such as in the pres-
ence of ballistic light, the adaptivity of reconstruction model
can be enhanced using the one-to-all strategy. However, how
ballistic component can contribute to the model adaptivity
is still unclear. Therefore, we resort to simulated studies.

B. Simulation Results
In Simulation I, we controlled η � 0 such that the ballistic
light through diffuser was depleted with only scattered light.
The phase mask for modeling a diffuser with strong scattering
is shown in Fig. 3(a). The characterized CCC curve of the si-
mulated diffuser in Fig. 3(b) reveals an isoplanatic range of
∼36 μm. Besides that, a base level of CCC at around 0 con-
firms the absence of ballistic light in the simulated output field.
For both Tests I and II of Simulation I, image reconstruction
results from only the odd test regions are presented in Fig. 3(c),

Fig. 3. Results of Simulation I where no ballistic light is involved. (a) The phase map of the simulated diffuser in which the color bar denotes the
range of phase value in radian. (b) The characterized CCC curve of the simulated diffuser, which has an FWHM of ∼36 μm and a base level of zero.
(c) The speckle patterns and predicted images in both Tests I and II at regions 1, 3, 5, 7, and 9 with the ground truth on the left. (d) Curves of
averaged PCC with error bar for two tests in Simulation I in which experimental PCC results are also included for comparison. The right subplot
shows the zoom-in area of the dash rectangle.
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whereas all the reconstruction metrics are given in Fig. 3(d).
We can see the objects can be well restored at regions 1 and
2 and recognizable at region 3 (Δx � 35 μm) although at a
decaying quality. Interestingly, in both Tests I and II, the net-
work seems not to reconstruct the objects from region 4 and
above, once the displacement is beyond the isoplanatic range.
This is confirmed by the high consistence of the PCC curves
between the simulated Tests I and II and the experimental Test
I within 0.1 mm displacement as shown in the enlarged subplot
of Fig. 3(d). This suggests that under the condition of no bal-
listic component, a reconstruction model hardly generalizes to

an unknown diffuser (region) even if adopting a one-to-all
training strategy in Test II.

Given the above results, we hypothesize the scalability of
network observed in experimental Test II is preconditioned
with ballistic light component. The scattering component
can provide specific statistical information of a diffuser (region),
i.e., a decryption key, but is unable to be used solely for training
an adaptive network even from multiple sources. The immun-
ity of the ballistic component to the change of scattering
condition (e.g., the shift of diffuser region) may play an indis-
pensable role in the model adaptivity.

Fig. 4. Results of Simulation II that involves different weights of ballistic light (η). (a) Phase distributions of the simulated diffusers corresponding
to different value of η. (b) The image reconstruction results on test regions 1–6 of varying Δx when the network is trained under different η. Note
that rows I–VI correspond to η � 0.1, 0.3, 0.5, 0.7, 0.9, and 1, respectively. (c) The curves of average PCC as a function of displacement for different
η. (d) The CCC curves of output field under different η.
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To confirm the hypothesis, Simulation II was further per-
formed to investigate the influence of ballistic light on the adap-
tivity of a model when trained with single-source data. The
range of phase distribution of the simulated diffuser was ad-
justed to control η � 0.1, 0.3, 0.5, 0.7, 0.9, and 1, respectively,
as seen in Fig. 4(a). The image reconstruction results at differ-
ent test regions (denoted by Δx) for each case of η are summa-
rized in Figs. 4(b) and 4(c). Qualitatively, it can be observed
from Fig. 4(b) that the generalization capability of network
to displacements is enhanced with increasing weight of ballistic
light (η). Such a trend is more straightforward from the PCC
curves shown in Fig. 4(c) where one corresponding to a larger η
is generally at a higher level among all the test regions.

At Δx � 0 μm, the average PCCs for different η are almost
the same, although a slight bias for the case of η � 1 is ob-
served. The reason may be that the information extraction ef-
ficiency of a network from speckle patterns is slightly higher
than from diffraction patterns directly as more high-frequency
components of an object could be encoded by the former due
to the larger scattering angles. Regarding the performance of
network generalization at the existence of scattering component
(i.e., η ≠ 1), which originates from a specific encryption key,
the poorer recovery at a test region is mainly due to the mis-
match between the encryption and the decryption keys. We
show that such mismatch can be mitigated by increasing weight
of ballistic light. According to the CCC curves under different η
[Fig. 4(d)], the isoplanatic range of the output field grows pro-
portionally with increasing ballistic light. In the extreme case of
η � 1, the output field is solely the diffracted object [Fig. 4(b)
VI] as no scattering is induced by the “flat” diffuser [Fig. 4(a)
VI]. Consequently, data from different regions all show the
same diffraction characteristic, which means CCC � 1 among
the output field and the trained network can generalize to un-
known diffuser regions freely. Through the above simulation
tests, the roles of scattered and ballistic light on the model gen-
eralization are clarified. In particular, the latter contributes to
the spatial coherence of output field to impact the network
scalability.

Our findings provide practicable guidance in enhancing a
DL model for scalable imaging through scattering media. In
our experiment, a simple way for increasing the weight of

ballistic light is to increase the distance z3 since the scattered
photons of relatively large divergence angle can be partially fil-
tered out during free-space propagation. This is verified by the
experimental results shown in Fig. 5 where both the base level
and the FWHM of the CCC curve are improved [Fig. 5(a)],
meaning stronger spatial coherence in the output field with
larger z3. Consequently, the performance of network in the
generalization Tests I and II is also improved with an increase
in z3 [Fig. 5(b)].

4. DISCUSSIONS AND CONCLUSION

Although there have been many DL studies aiming at improv-
ing the model generalization for descattered imaging, the origin
and boundary of such model scalability from the perspective of
physics were still unclear. In this paper, through both experi-
mental and simulated tests, we found the ballistic component
was closely related to the model adaptivity. Furthermore, the
different mechanisms of scattered and ballistic light for a
reconstruction model were revealed. The scattering component
was encrypted by a diffuser (region) from which a model
learned a decryption key specific to the diffuser property.
Although training the model with data from multiple encryp-
tion keys seemed to allow it to learn the statistical information
of all diffusers with enhanced scalability, it was preconditioned
with the ballistic component that offered a physical meaning
invariance among the speckle data. Additionally, the model
scalability was enhanced with larger weight of ballistic light as
the spatial coherence of output field can be stronger. Based on
the above findings, the network generalization ability was
enhanced in experiment by increasing the detected ballistic
component.

A few more discussions about this paper were clarified
herein. First, it seemed the previous DL works about scalable
imaging through scattering media [23–26] did not differentiate
the roles of scattered and ballistic light; thus, were not aware
of the ballistic contribution as a precondition. Usually, it was
not the case to have a purely diffuse system in experiment when
the diffuser was at the focal plane of subsequent imaging optics.
There did exist a part of ballistic light, which could be esti-
mated by comparing the experimentally measured CCC curve
with the simulated ones [Fig. 4(d)]. Second, in our paper,

Fig. 5. Improved model generalization by increasing distance z3 in experiment. (a) The CCC curves measured experimentally for
z3 � 5, 10, 20 cm, respectively. (b) The curves of average PCC for network testing on a series of regions in experimental Tests I and II under
the case of different z3.

1044 Vol. 11, No. 6 / June 2023 / Photonics Research Research Article



instead of using multiple diffusers, multiple regions of one dif-
fuser were employed, which corresponded to different TMs,
whereas, having the same mean scattering characteristics.
Finally, in addition to revealing the prerequisite of ballistic light
during one-to-all model training for better scalability, our paper
also tried to define the physical boundary for a DL model
trained under varying scattering conditions. It was hypoth-
esized that the number of encryption keys involved during net-
work training, resulting from internal or external perturbations,
a change in incident beam, etc., cannot be unlimited. This may
confuse a network due to the interference among the keys or
even exceed its recognition capability. Besides, DL for scalable
imaging through a thick scattering medium also saw limitation
because of a lack of ballistic contribution. Enough data under
each encryption key (corresponding to various scattering con-
ditions) with an invariant correlation (i.e., ballistic component)
among them, will define the boundary for the construction of a
scalable DL model and further application. For example, a re-
cent work for 3D adaptive descattering via a DSN [26] still
relied on training data with sufficient ballistic component by
detecting mostly the single-scattered photons in holographic
particle imaging.

To summarize, our findings added new knowledge to the
physical mechanisms of utilizing DL for scalable imaging
through scattering media in which the roles of scattered and
ballistic light components were revealed for contributing to
the origin and physical boundary of the model adaptivity.
The paper also offered practical guidance for improving the
DL scalability by gating the ballistic photons. This can be per-
formed by increasing the diffraction distance in our setup (also
adopted for Refs. [19,25]) or introducing a spatial filter in a
general setup [8,18,23] where the diffuser is imaged onto a
camera via an objective lens or 4f system. Nowadays, the
one-to-all training strategy had become the mainstream way
to increase network generalization. Herein, our research results
deepened the cognition on this mainstream method and pro-
vided guiding significance for the related areas. It reminded us
that the invariant correlation among the multisource speckle
data was a perquisite for successful one-to-all training. Besides,
the physical boundary of applying DL to descattering with gen-
eral applicability was also defined to prescribe the scope of ap-
plication. The mechanism understanding and guidance value of
our research were beneficial for developing DL frameworks for
scalable imaging under dynamic scattering scenarios.
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