• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 106003 (2021)
Qin Li, Wang Lanlan, Liang Hao*, and Cheng Linghao
Author Affiliations
  • Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 510632, China
  • show less
    DOI: 10.3788/LOP202158.0106003 Cite this Article Set citation alerts
    Qin Li, Wang Lanlan, Liang Hao, Cheng Linghao. Pre-Pump Brillouin Optical Time Domain Analysis System Based on Double-Sideband Interference[J]. Laser & Optoelectronics Progress, 2021, 58(1): 106003 Copy Citation Text show less
    References

    [1] Nikles M, Thevenaz L, Robert P A. Simple distributed temperature sensor based on Brillouin gain spectrum analysis[J]. Proceeding of SPIE, 2360, 138-141(1994). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=983290

    [2] Horiguchi T, Tateda M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory[J]. Journal of Lightwave Technology, 7, 1170-1176(1989). http://ci.nii.ac.jp/naid/20000911259

    [3] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 12, 8601-8639(2012). http://pubmedcentralcanada.ca/pmcc/articles/PMC3444066/

    [4] Urricelqui J, Ruiz-Lombera R, Sagues M et al. Overcoming non-local effects and Brillouin threshold limitations in Brillouin distributed sensors[J]. Proceeding of SPIE, 9634, 963487(2015). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2442166

    [5] Kurashima T, Tateda M, Horiguchi T et al. Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state[J]. IEEE Photonics Technology Letters, 9, 360-362(1997). http://ieeexplore.ieee.org/document/556073

    [6] Wang J J, Li Y Q. Review of methods for improving performance of Brillouin optical time-domain analysis system[J]. Laser & Optoelectronics Progress, 55, 110003(2018).

    [7] Brown A W, Colpitts B G, Brown K. Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution[J]. Journal of Lightwave Technology, 25, 381-386(2007).

    [8] Foaleng S M, Tur M, Beugnot J C et al. High spatial and spectral resolution long-range sensing using Brillouin echoes[J]. Journal of Lightwave Technology, 28, 2993-3003(2010).

    [9] Zhang X P, Wang F, Lu Y G. Fully distributed optical fiber sensor based on Brillouin effect[J]. Laser & Optoelectronics Progress, 46, 14-20(2009).

    [10] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 21, 539-541(1972). http://scitation.aip.org/content/aip/journal/apl/21/11/10.1063/1.1654249

    [11] Zhong X X, Liang H, Cheng L H et al. A highly accurate distributed sensor based on the Brillouin gain-loss spectrum[J]. Laser & Optoelectronics Progress, 55, 100603(2018).

    [12] Li W H, Bao X Y, Li Y et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 16, 21616-21625(2008). http://www.tandfonline.com/servlet/linkout?suffix=CIT0099&dbid=16&doi=10.1080%2F24705314.2018.1426138&key=10.1364%2FOE.16.021616

    [13] Zou L F, Bao X Y, Wan Y D et al. Coherent probe-pump-based Brillouin sensor for centimeter-crack detection[J]. Optics Letters, 30, 370-372(2005).

    [15] Motil A, Bergman A, Tur M. State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 78, 81-103(2016).

    [16] Minardo A, Bernini R, Zeni L. Low distortion Brillouin slow light in optical fibers using AM modulation[J]. Optics Express, 14, 5866-5876(2006).

    [17] Wang T, Tian F, Tang W Q et al. Brillouin frequency shift extraction method for distributed optical fiber temperature sensing system[J]. Laser & Optoelectronics Progress, 56, 170631(2019).

    [18] Ravet F, Bao X Y, Li Y et al. Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution[J]. Journal of Lightwave Technology, 25, 3610-3618(2007). http://www.opticsinfobase.org/abstract.cfm?id=154258

    [19] Parker T R, Farhadiroushan M, Feced R et al. Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers[J]. IEEE Journal of Quantum Electronics, 34, 645-659(1998).

    [20] Lecoeuche V, Webb D J, Pannell C N et al. Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time[J]. Optics Letters, 25, 156-158(2000).

    [21] Shi J, Chen X, Ouyang M et al. Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity[J]. Applied Physics B, 95, 657-660(2009).

    [22] Urricelqui J, Zornoza A, Sagues M et al. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation[J]. Optics Express, 20, 26942-26949(2012).

    [23] Okawachi Y, Bigelow M S, Sharping J E et al. Tunable all-optical delays via Brillouin slow light in an optical fiber[J]. Physical Review Letters, 94, 153902(2005).

    [24] Agrawal G. Introduction[M]. //Nonlinear Fiber Optics. Amsterdam: Elsevier, 1-25(2013).

    [25] Pant R, Siva Shakthi A, Yelikar A B. Wideband excitation of Fano resonances and induced transparency by coherent interactions between Brillouin resonances[J]. Scientific Reports, 8, 9175(2018).

    Qin Li, Wang Lanlan, Liang Hao, Cheng Linghao. Pre-Pump Brillouin Optical Time Domain Analysis System Based on Double-Sideband Interference[J]. Laser & Optoelectronics Progress, 2021, 58(1): 106003
    Download Citation