• Infrared and Laser Engineering
  • Vol. 49, Issue 2, 203001 (2020)
He Sailing1、2、*, Chen Xiang1, Li Shuo1, Yao Xinli1、2, and Xu Zhanpeng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla202049.0203001 Cite this Article
    He Sailing, Chen Xiang, Li Shuo, Yao Xinli, Xu Zhanpeng. Small hyperspectral imagers and lidars and their marine applications[J]. Infrared and Laser Engineering, 2020, 49(2): 203001 Copy Citation Text show less
    References

    [1] Lu Y, Li X, Tian Q, et al. Progress in marine oil spill optical remote sensing: detected targets, spectral response characteristics, and theories[J]. Marine Geodesy, 2013, 36(3): 334-346.

    [2] Fingas M, Brown C E. A Review of oil spill remote sensing[J]. Sensors, 2017, 18(1): 91.

    [3] Hu J, Wang D. Monitoring method of ocean oil spilling based on remote sensing[J]. Environment Protection Science, 2014, 40(1): 68-73. (in Chinese)

    [4] Hu C, Müller-Karger F E, Taylor C, et al. MODIS detects oil spills in lake maracaibo, venezuela[J]. Eos, Transactions American Geophysical Union, 2003, 84(33): 313-319.

    [5] Lu Y, Tian Q, Li X. The remote sensing inversion theory of offshore oil slick thickness based on a two-beam interference model[J]. Science China Earth Sciences, 2011, 54(5): 678-685.

    [6] Lu Y, Tian Q, Wang X, et al. Determining oil slick thickness using hyperspectral remote sensing in the Bohai Sea of China[J]. International Journal of Digital Earth, 2013, 6(1): 76-93.

    [7] Leifer I, Lehr W J, Simecek-Beatty D, et al. State of the art satellite and airborne marine oil spill remote sensing: application to the BP deepwater horizon oil spill[J]. Remote Sensing of Environment, 2012, 124: 185-209.

    [8] Lu Y, Zhan W, Hu C. Detecting and quantifying oil slick thickness by thermal remote sensing: a ground-based experiment[J]. Remote Sensing of Environment, 2016, 181: 207-217.

    [9] Brekke C, Solberg A H S. Oil spill detection by satellite remote sensing[J]. Remote Sensing of Environment, 2005, 95(1): 1-13.

    [10] Keramitsoglou I, Cartalis C, Kiranoudis C T. Automatic identification of oil spills on satellite images[J]. Environmental Modelling & Software, 2006, 21(5): 640-652.

    [11] Brown C E, Fingas M F. Review of the development of laser fluorosensors for oil spill application[J]. Marine Pollution Bulletin, 2003, 47(9): 477-484.

    [12] Lennon M, Babichenko S, Thomas N, et al. Detection and mapping of oil slicks in the sea by comined use of hyperspectral imagery and laser induced fluorescence[J]. EARSeL eProceedings, 2006, 5: 120-128.

    [13] Jiang W T, Li J W, Yao X L, et al. Fluorescence hyperspectral imaging of oil samples and its quantitative applications in component analysis and thickness estimation[J]. Sensors, 2018, 18(12): 10.

    [14] Gao F, Li J, Lin H, et al. Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system[J]. Opt Express, 2017, 25(21): 25515-25522.

    [15] He L, Song X, Yu F, et al. Potential risk and prevention of phytoplankton outbreak to water-cooling system in nuclear power plant in Fangchenggang, Guangxi[J]. Oceanologiaet Limnologia Sinica, 2019, 50(3): 700-706.(in Chinese)

    [16] Stumpf R P, Culver M E, Tester P A, et al. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data[J]. Harmful Algae, 2003, 2(2): 147-160.

    [17] Alexander R, Gikuma-Njuru P, Imberger J. Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis[J]. Limnology and Oceanography: Methods, 2012, 10(6): 402-415.

    [18] Escoffier N, Bernard C, Hamlaoui S, et al. Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state[J]. Journal of Plankton Research, 2014, 37(1): 233-247.

    [19] Gao F, Lin H, Chen K, et al. Light-sheet based two-dimensional Scheimpflug lidar system for profile measurements[J]. Optics Express, 2018, 26(21): 27179-27188.

    [20] Chen K, Gao F, Chen X, et al. Overwater light-sheet Scheimpflug lidar system for an underwater three-dimensional profile bathymetry[J]. Applied Optics, 2019, 58(27): 7643-7648.

    [21] Dirk C W, Delgado M F, Olguin M, et al. A prism-grating-prism spectral imaging approach[J]. Studies in Conservation, 2009, 54(2): 77-89.

    [22] Cai F, Wang D, Zhu M, et al. Pencil-like imaging spectrometer for bio-samples sensing[J]. Biomedical Optics Express, 2017, 8(12): 5427-5436.

    [23] Chen J, Cai F, He R, et al. Experimental demonstration of remote and compact imaging spectrometer based on mobile devices[J]. Sensors, 2018, 18(7): 1989.

    [24] Li J, Jiang W, Yao X, et al. Fast quantitative fluorescence authentication of milk powder and vanillin by a line-scan hyperspectral system[J]. Applied Optics, 2018, 57(22): 6276-6282.

    [25] Huseynova T, Waring G O, Roberts C, et al. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and scheimpflug imaging analysis in normal eyes[J]. American Journal of Ophthalmology, 2014, 157(4): 885-893.

    [26] Faria-Correia F, Ambrósio Jr R. Clinical applications of the scheimpflug principle in ophthalmology[J]. Revista Brasileira de Oftalmologia, 2016, 75: 160-165.

    [27] Miks A, Novak J, Novak P. Analysis of imaging for laser triangulation sensors under Scheimpflug rule[J]. Optics Express, 2013, 21(15): 18225-18235.

    [28] Zhao G, Ljungholm M, Malmqvist E, et al. Inelastic hyperspectral lidar for profiling aquatic ecosystems[J]. Laser & Photonics Reviews, 2016, 10(5): 807-813.

    [29] Nakamura S. Background story of the invention of efficient InGaN blue-light-emitting diodes (nobel lecture)[J]. Angewandte Chemie International Edition, 2015, 54(27): 7770-7788.

    [30] Pope R M, Fry E S. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements[J]. Applied Optics, 1997, 36(33): 8710-8723.

    [31] Sun L. Research on remote sensing technology of ocean environmental parameters based on laser induced fluorescence[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)

    [32] Hakala T, Suomalainen J, Kaasalainen S, et al. Full waveform hyperspectral LiDAR for terrestrial laser scanning[J]. Optics Express, 2012, 20(7): 7119-7127.

    CLP Journals

    [1] Liu Pengfei, Zhao Huaici, Li Peixuan. Hyperspectral images reconstruction using adversarial networks from single RGB image[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200093

    [2] JING Min, CHEN Manlong, DING Min, ZHANG Qi, YANG Fan, MA Zhenyuan. Oil recognition based on fluorescence-lifetime decay curve combined with support vector machine[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 258

    He Sailing, Chen Xiang, Li Shuo, Yao Xinli, Xu Zhanpeng. Small hyperspectral imagers and lidars and their marine applications[J]. Infrared and Laser Engineering, 2020, 49(2): 203001
    Download Citation