• Chinese Journal of Lasers
  • Vol. 52, Issue 12, 1202201 (2025)
Daihua Li1, Weifeng He1,2,*, Xiangfan Nie1,2, Yuhang Wu1, and Jile Pan2
Author Affiliations
  • 1National Key Lab of Aerospace Power System and Plasma Technology, School of Aviation Engineering, Air Force Engineering University, Xi’an 710038, Shaanxi , China
  • 2National Key Lab of Aerospace Power System and Plasma Technology, Xi’an Jiaotong University, Xi’an 710038, Shaanxi , China
  • show less
    DOI: 10.3788/CJL250513 Cite this Article Set citation alerts
    Daihua Li, Weifeng He, Xiangfan Nie, Yuhang Wu, Jile Pan. Enhancing Ultra-High Cycle Fatigue Properties of GH4169 Alloy Using Microscale Laser Shock Peening[J]. Chinese Journal of Lasers, 2025, 52(12): 1202201 Copy Citation Text show less
    References

    [2] Li J R, Xiong J C, Tang D Z[M]. Advanced high temperature structural materials and technology, 9(2012).

    [3] Li W. Common characteristics in failure analysis of aeroengine blade[J]. Gas Turbine Experiment and Research, 15, 28-30, 53(2002).

    [4] Yang K, Zhong B, Huang Q et al. Stress ratio effect on notched fatigue behavior of a Ti-8Al-1Mo-1V alloy in the very high cycle fatigue regime[J]. International Journal of Fatigue, 116, 80-89(2018).

    [5] Jiao S B, Gao C, Cheng L et al. A very high-cycle fatigue test and fatigue properties of TC17 titanium alloy[J]. Journal of Materials Engineering and Performance, 25, 1085-1093(2016).

    [6] Sano Y. Quarter century development of laser peening without coating[J]. Metals, 10, 152(2020).

    [7] Gill A S, Telang A, Vasudevan V K. Characteristics of surface layers formed on Inconel 718 by laser shock peening with and without a protective coating[J]. Journal of Materials Processing Technology, 225, 463-472(2015).

    [8] Vamsi A Y, Vadani M, Karan B et al. Investigation of surface structural modifications caused by the influence of the ablative layer in Inconel718 Ni-base superalloy through laser shock peening[J]. Materials Letters, 354, 135332(2024).

    [9] Zhao W, He W F, Zhu D F et al. Comparative investigation on microstructure and mechanical properties of GH4169 superalloy after laser shock peening with and without coating[J]. Journal of Materials Research and Technology, 29, 276-285(2024).

    [10] Karthik D, Swaroop S. Laser peening without coating——an advanced surface treatment: a review[J]. Materials and Manufacturing Processes, 32, 1565-1572(2017).

    [11] Chen R, Xue H Q, Li B. Comparison of SP, SMAT, SMRT, LSP, and UNSM based on treatment effects on the fatigue properties of metals in the HCF and VHCF regimes[J]. Metals, 12, 642(2022).

    [12] Li Y H, He W F[M]. Theory and technology of laser shock strengthening, 285(2013).

    [13] Sakino Y, Sano Y, Sumiya R et al. Major factor causing improvement in fatigue strength of butt welded steel joints after laser peening without coating[J]. Science and Technology of Welding and Joining, 17, 402-407(2012).

    [14] Sano Y, Sakino Y, Mukai N et al. Laser peening without coating to mitigate stress corrosion cracking and fatigue failure of welded components[J]. Materials Science Forum, 581, 519-522(2008).

    [15] Troiani E, Zavatta N. The effect of laser peening without coating on the fatigue of a 6082-T6 aluminum alloy with a curved Notch[J]. Metals, 9, 728(2019).

    [16] Yu Z C, Yu K, Pan X L et al. High-precision control of microstructure and mechanical properties of Ti‒6Al‒4V thin-walled titanium alloy components by laser peening without coating[J]. Journal of Materials Research and Technology, 33, 1512-1524(2024).

    [17] Pan X L, Li X, Zhou L C et al. Effect of residual stress on S-N curves and fracture morphology of Ti6Al4V titanium alloy after laser shock peening without protective coating[J]. Materials, 12, 3799(2019).

    [18] Meng S P, Yu Y Q, Wang L F et al. Improving tension fatigue performance of gray cast iron by LSPwC-induced gradient structure and carbon diffusion[J]. Journal of Materials Research and Technology, 31, 3580-3590(2024).

    [19] Dang X F, Liang X Q, Luo S H et al. Surface strengthening and fatigue life improvement of single crystal Ni-based superalloys via laser shock peening without coating[J]. Materials & Design, 232, 112097(2023).

    [20] Sano Y, Masaki K, Mizuta Y et al. Effects of laser peening with a pulse energy of 1.7 mJ on the residual stress and fatigue properties of A7075 aluminum alloy[J]. Metals, 11, 1716(2021).

    [21] Tian S G, Wang X, Liu C et al. Influence of heat treatment regimes on microstructure and creep properties of GH4169G alloy[J]. The Chinese Journal of Nonferrous Metals, 23, 108-115(2013).

    [22] Shen J L, Wei X Y, Xu P W et al. Influence of δ phase on strength and toughness of GH4169 alloy[J]. Rare Metal Materials and Engineering, 48, 1467-1475(2019).

    [23] Nataraj M V, Swaroop S. Effect of laser peening without coating on mechanical and microstructural behaviour of SS304 stainless steel[J]. Materials Today Communications, 33, 104200(2022).

    [24] Yu Y Q, Gong J N, Fang X Y et al. Comparison of surface integrity of GH4169 superalloy after high-energy, low-energy, and femtosecond laser shock peening[J]. Vacuum, 208, 111740(2023).

    [25] Huang S, Sheng J, Zhou J Z et al. Microstructure characteristics and high-temperature performance of laser peened IN718 nickel-based alloy[J]. Rare Metal Materials and Engineering, 45, 3284-3289(2016).

    [26] Wen F J, Long Z, Xing Z G et al. The effect of laser shock peening on very high cycle fatigue properties of laser welded 2A60 aluminum alloy joints[J]. Engineering Fracture Mechanics, 290, 109537(2023).

    [27] Yang K, Huang Q, Wang Q Y et al. Competing crack initiation behaviors of a laser additively manufactured nickel-based superalloy in high and very high cycle fatigue regimes[J]. International Journal of Fatigue, 136, 105580(2020).

    [28] Yang Y F, Hu H Y, Min L et al. Failure mechanism and life correlation of Inconel 718 in high and very high cycle fatigue regimes[J]. International Journal of Fatigue, 175, 107764(2023).

    [29] Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy[J]. Chinese Journal of Engineering, 40, 822-832(2018).

    [30] An J L, Wang L, Liu Y et al. The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature[J]. Materials Science and Engineering: A, 684, 312-317(2017).

    [31] Li W, Sun R, Wang P et al. Subsurface faceted cracking behavior of selective laser melting Ni-based superalloy under very high cycle fatigue[J]. Scripta Materialia, 194, 113613(2021).

    [32] Qin Z, Li B, Chen R et al. Effect of shot peening on high cycle and very high cycle fatigue properties of Ni-based superalloys[J]. International Journal of Fatigue, 168, 107429(2023).

    [33] Sun R, Li W, Zhang Y C et al. Microstructure related failure mechanism of selective laser melted GH4169 with interior fatigue cracking[J]. Materials Letters, 308, 131284(2022).

    [34] Wang B H, Cheng L, Li D C. Study on very high cycle fatigue properties of forged TC4 titanium alloy treated by laser shock peening under three-point bending[J]. International Journal of Fatigue, 156, 106668(2022).

    [35] Yang C H, Hodgson P D, Liu Q C et al. Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening[J]. Journal of Materials Processing Technology, 201, 303-309(2008).

    [36] Liao X L, Su B Y, Xu S et al. Flow law of plastic deformation of TC4 titanium alloy by laser shock peening[J]. Chinese Journal of Lasers, 50, 1602206(2023).

    [37] Meng X K, Zhang H, Song F Y et al. Microstructure and tensile properties of Ti6Al4V titanium alloy by dual-pulse laser shock peening[J]. Chinese Journal of Lasers, 51, 2002201(2024).

    [38] Yang K, Huang Q, Zhong B et al. Enhanced extra-long life fatigue resistance of a bimodal titanium alloy by laser shock peening[J]. International Journal of Fatigue, 141, 105868(2020).

    [39] Luo X K, Dang N, Wang X. The effect of laser shock peening, shot peening and their combination on the microstructure and fatigue properties of Ti-6Al-4V titanium alloy[J]. International Journal of Fatigue, 153, 106465(2021).

    [40] Ye C R, Sun J Y, Long Y B et al. Effect of a non-continuous composite path with zero overlapping rate on cutoff value of detail fatigue rated strength of aerospace titanium alloy TC4 under laser shock peening[J]. Chinese Journal of Lasers, 51, 2002202(2024).

    Daihua Li, Weifeng He, Xiangfan Nie, Yuhang Wu, Jile Pan. Enhancing Ultra-High Cycle Fatigue Properties of GH4169 Alloy Using Microscale Laser Shock Peening[J]. Chinese Journal of Lasers, 2025, 52(12): 1202201
    Download Citation