• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 82804 (2018)
Lu Jun1, Ding Jianyong1, He Yan2, Yu Guangli1, Yang Bin1, Yao Hongquan1, and Zhou Jun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.082804 Cite this Article Set citation alerts
    Lu Jun, Ding Jianyong, He Yan, Yu Guangli, Yang Bin, Yao Hongquan, Zhou Jun. High Repetition Rate Sub-Nanosecond Dual-Wavelength Solid-State Laser for Airborne Lidar[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82804 Copy Citation Text show less
    References

    [1] ern P, Jelínkov H, Zverev P G, et al. Solid state lasers with Raman frequency conversion[J]. Progress in Quantum Electronics, 2004, 28(2): 113-143.

    [2] Ostermeyer M, Kappe P, Menzel R, et al. Diode-pumped Nd∶YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system[J]. Applied Optics, 2005, 44(4): 582-590.

    [3] Hwang D, Ryu S G, Misra N, et al. Nanoscale laser processing and diagnostics[J]. Applied Physics A, 2009, 96(2): 289-306.

    [4] O′Neill W, Li K. High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser[J]. Proceedings of the IEEE, 2009, 15(2): 462-470.

    [5] Zhao M, Hao Q, Guo Z R, et al. Compact fiber-solid picosecond laser source with kilohertz repetition rate[J]. Chinese Journal of Lasers, 2018, 45(4): 0401010.

    [6] Ma Y F, Shen Y J, Xu L, et al. Dual-wavelength amplification properties of continuous-operation Yb∶YAG slab laser[J]. Chinese Journal of Lasers, 2018, 45(1): 0101006.

    [7] Lu J, Liu Z Z, Liu Y Q, et al. Femtosecond thin-disk regenerative amplifier under burst operation mode[J]. Chinese Journal of Lasers, 2017, 44(5): 0501008.

    [8] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 1996, 53(4): 1749-1761.

    [9] Corkum P B, Brunel F, Sherman N K, et al. Thermal response of metals to ultrashort-pulse laser excitation[J]. Physical Review Letters, 1988, 61(25): 2886-2889.

    [10] Forget S, Balembois F, Georges P, et al. A new 3D multipass amplifier based on Nd∶YAG or Nd∶YVO4 crystals[J]. Applied Physics B, 2002, 75(4/5): 481-485.

    [11] Nghia N T, Hao N V, Orlovich V A, et al. Generation of nanosecond laser pulses at a 2.2-MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+∶YVO4 laser[J]. Quantum Electronics, 2011, 41(9): 790-793.

    [12] Wang J G, Sun Z,Jiang M H, et al. Experimental study of nanosecond Nd∶YAG rod double-pass amplification[J]. Journal of Optoelectronics·Laser, 2012, 23(6): 1031-1034.

    [13] Guo X Y, Tokita S, Kawanaka J. 12 mJ Yb∶YAG/Cr∶YAG microchip laser[J]. Optics Letters, 2018, 43(3): 459-461.

    [14] Koechner W. Solid-state laser engineering[M]. Atlanta: Springer, 2006.

    [15] Degnan J J. Theory of the optimally coupled Q-switched laser[J]. Proceedings of the IEEE, 1989, 25(2): 214-220.

    [16] Zhang X, Feng C, Xie X Y, et al. Nanosecond electro-optically Q-switched Nd∶YVO4 laser[J]. High Power Laser and Particle Beams, 2011, 23(9): 2361-2364.

    Lu Jun, Ding Jianyong, He Yan, Yu Guangli, Yang Bin, Yao Hongquan, Zhou Jun. High Repetition Rate Sub-Nanosecond Dual-Wavelength Solid-State Laser for Airborne Lidar[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82804
    Download Citation