• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 80002 (2018)
Zheng Ye, Li Pan, Zhu Zhanda, Liu Xiaoxi, Wang Junlong, and Wang Xuefeng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.080002 Cite this Article Set citation alerts
    Zheng Ye, Li Pan, Zhu Zhanda, Liu Xiaoxi, Wang Junlong, Wang Xuefeng. Progress in High-Power Narrow-Linewidth Fiber Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80002 Copy Citation Text show less
    References

    [1] Xu S H, Li C, Zhang W N, et al. Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm[J]. Optics Letters, 2013, 38(4): 501-503.

    [2] Li C, Xu S H, Huang X, et al. All-optical frequency and intensity noise suppression of single-frequency fiber laser[J]. Optics Letters, 2015, 40(9): 1964-1967.

    [3] Mavalvala N, McClelland D E, Mueller G, et al. Lasers and optics: looking towards third generation gravitational wave detectors[J]. General Relativity and Gravitation, 2011, 43(2): 569-592.

    [4] Wessels P, Karow M, Kuhn V, et al. Single-frequency fiber amplifiers for gravitational wave detection[C]∥CLEO: Science and Innovations 2013, 2013: CW3M.5.

    [5] Chu S, Bjorkholm J E, Ashkin A, et al. Experimental observation of optically trapped atoms[J]. Physical Review Letters, 1986, 57(3): 314-317.

    [6] Sané S S, Bennetts S, Debs J E, et al. 11 W narrow line width laser source at 780 nm for laser cooling and manipulation of rubidium[J]. Optics Express, 2012, 20(8): 8915-8919.

    [7] Wu T, Peng X, Gong W, et al. Observation and optimization of 4 He atomic polarization spectroscopy[J]. Optics Letters, 2013, 38(6): 986-988.

    [8] Thompson R J, Tu M, Aveline D C, et al. High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals[J]. Optics Express, 2003, 11(14): 1709-1713.

    [9] Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power[J]. Proceedings of SPIE, 2014, 8964: 896407.

    [10] Zhang L, Jiang H W, Cui S Z, et al. Versatile Raman fiber laser forsodium laser guide star[J]. Laser & Photonics Reviews, 2014, 8(6): 889-895.

    [11] Ricciardi I, Tommasi E D, Maddaloni P, et al. A narrow-linewidth, frequency-stablized OPO for sub-Doppler molecular spectroscopy around 3 μm[J]. Proceedings of SPIE, 2012, 8434: 84341Z.

    [12] August S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers[J]. Optics Letters, 2003, 28(5): 331-333.

    [13] Liu A, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[J]. Proceedings of SPIE, 2004, 5335: 81-88.

    [14] August S J, Ranka J K, Fan T Y, et al. Beam combining of ytterbium fiber amplifiers[J]. Journal of the Optical Society of America B, 2007, 24(8): 1707-1715.

    [15] Cheung E C, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 2008, 33(4): 354-356.

    [16] Yu C X, August S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.

    [17] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834.

    [18] Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55(9): 096101.

    [19] Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 487-497.

    [20] Schreiber T, Wirth C, Schmidt O, et al. Incoherent beam combining of continuous-wave and pulsed Yb-doped fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 354-360.

    [21] Wirth C, Schmidt O, Tsybin I, et al. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers[J]. Optics Express, 2009, 17(3): 1178-1183.

    [22] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16): 3118-3120.

    [23] Honea E, Afzal R S, Leuchs M S, et al. Advances in fiber laser spectral beam combining for power scaling[J]. Proceedings of SPIE, 2015, 9730: 97300Y.

    [24] Zheng Y, Yang Y F, Wang J H, et al. 10.8 kW spectral beam combination of eight all-fiber super fluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071.

    [25] http:∥news.lockheedmartin.com/2017-03-16-Lockheed- Martin-to-Deliver-World-Record-Setting-60 kW-Laser-to-U-S-Army.

    [26] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

    [27] Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 1997.

    [28] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. Journal of Lightwave Technology, 1997, 15(10): 1842-1851.

    [29] Yin Z, Yan F P, Liu S, et al. Research of stimulated Brillouin scattering effect in 2 μm band single-frequency Raman fiber amplifier[J]. Navigation and Control, 2015, 14(1): 100-105.

    [30] Zhao D, Yan F P, Liu S, et al. Analysis of the characteristics of the thulium doped fiber amplifier for dual-single-frequency amplification[J]. Navigation and Control, 2017, 16(1): 57-63.

    [31] WeBels P, Adel P, Wandt D, et al. Novel suppression scheme for Brillouin scattering[J]. Optics Express, 2004, 12(19): 4443-4448.

    [32] Alegria C, Jeong Y, Codemard C, et al. 83-W single-frequency narrow-line width MOPA using large-core erbium ytterbium co-doped fiber[J]. IEEE Photonics Technology Letters, 2004, 16(8): 1825-1827.

    [33] Leigh M, Shi W, Zong J, et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core[J]. Applied Physics Letters, 2008, 92(18): 181108.

    [34] Mermelstein M D, Andrejco M J, Fini J, et al. SBS suppression and acoustic management for high-power narrow-linewidth fiber lasers and amplifiers[J]. Proceedings of SPIE, 2010, 7580: 75801G.

    [35] Robin C, Dajani I. Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications[J]. Optics Letters, 2011, 36(14): 2641-2643.

    [36] Li M J, Chen X, Wang J, et al. Al/Ge co-doped large mode area fiber with high SBS threshold[J]. Optics Express, 2007, 15(13): 8290-8299.

    [37] Liu T, Tong W J, Zhang F H, et al. A new Ge/F-co-doped SMF with enhanced SBS threshold fabricated by PCVD[J]. Chinese Physics Letters, 2011, 28(10): 104211.

    [38] Kovalev V I, Harrison R G. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers[J]. Optics Letters, 2006, 31(2): 161-163.

    [39] Liu A. Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient[J]. Optics Express, 2007, 15(3): 977-984.

    [40] Hansryd J, Dross F, Westlund M, et al. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution[J]. Journal of Lightwave Technology, 2001, 19(11): 1691-1697.

    [41] Yoshizawa N, Imai T. Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling[J]. Journal of Lightwave Technology, 1993, 11(10): 1518-1522.

    [42] Boggio J M C, Marconi J D, Fragnito H L. Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions[J]. Journal of Lightwave Technology, 2005, 23(11): 3808-3814.

    [43] Engelbrecht R, Mueller M, Schmauss B. SBS shaping and suppression by arbitrary strain distributions realized by a fiber coiling machine[C]∥IEEE/LEOS Winter Topicals Meeting Series, 2009: 248-249.

    [44] Zhang L, Cui S Z, Liu C, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 2013, 21(5): 5456-5462.

    [45] Engelbrecht R. Analysis of SBS gain shaping and threshold increase by arbitrary strain distributions[J]. Journal of Lightwave Technology, 2014, 32(9): 1689-1700.

    [46] Zeringue C, Dajani I, Naderi S, et al. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light[J]. Optics Express, 2012, 20(19): 21196-21213.

    [47] Flores A, Lu C, Robin C, et al. Experimental and theoretical studies of phase modulation in Yb-doped fiber amplifiers[J]. Proceedings of SPIE, 2012, 8381: 83811B.

    [48] Soh D, Koplow J P, Moore S W, et al. The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers[J]. Optics Express, 2010, 21(18): 22393-22405.

    [49] Bednyakova A E, Gorbunov O A, Politko M O, et al. Generation dynamics of the narrowband Yb-doped fiber laser[J]. Optics Express, 2013, 21(7): 8177-8182.

    [50] Roy V, Piché M, Babin F, et al. Nonlinear wave mixing in a multilongitudinal-mode erbium-doped fiber laser[J]. Optics Express, 2005, 13(18): 6791-6797.

    [51] Kablukov S I, Zlobina E A, Podivilov E V, et al. Output spectrum of Yb-doped fiber lasers[J]. Optics Letters, 2012, 37(13): 2508-2510.

    [52] Liu W, Kuang W J, Jiang M, et al. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier[J]. Laser Physics Letters, 2016, 13(3): 035105.

    [53] Babin S A, Churkin D V, Ismagulov A E, et al. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser[J]. Journal of the Optical Society of America B, 2007, 24(8): 1729-1738.

    [54] Cholan N A, Al-Mansoori M H, Noor A S M, et al. Multi-wavelength generation by self-seeded four wave mixing[J]. Optics Express, 2013, 21(5): 6131-6138.

    [55] Liu G B, Yang Y F, Lei M, et al. 1.5 kW near-diffraction-limited all fiber ASE source with narrow linewidth[J]. Chinese Journal of Lasers, 2015, 42(12): 1202009.

    [56] Xu J M, Huang L, Jiang M, et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output[J]. Photonics Research, 2017, 5(4): 350-354.

    [57] Chen X L, Zheng Y, Li X, et al. 10.6 GHz linewidth maintained random fiber laser seed source[J]. Chinese Journal of Lasers, 2017, 44(7): 0701005.

    [58] Xu Y, Fang Q, Qin Y G, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser[J]. Applied Optics, 2015, 54(32): 9419-9421.

    [59] Huang Z H, Liang X B, Li C Y, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multi-longitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302.

    [60] Hao J P, Zhao H, Zhang D Y, et al. kW-level narrow linewidth fiber amplifier seeded by a fiber Bragg grating based oscillator[J]. Applied Optics, 2015, 54(15): 4857-4862.

    [61] Aoki Y, Tajima K, Mito I. Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems[J]. Journal of Lightwave Technology, 1988, 6(5): 710-719.

    [62] Korotky S K. Multifrequency lightwave source using phase modulation for suppressing stimulated Brillouin scattering in optical fiber: EP0730190A3[P]. 1995-03-02.

    [63] Yang J L, Guo Z N, Zha K D. Experimental study of phase modulation for SBS suppression in optical fiber CATV system[J]. Chinese Journal of Lasers, 2001, 28(5): 439-442.

    [64] Liu Y F, Lü Z W, Dong Y K, et al. Research on stimulated Brillouin scattering suppression based on multi-frequency phase modulation[J]. Chinese Optics Letters, 2009, 7(1): 29-31.

    [65] Wang X L, Zhou P, Leng J Y, et al. A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single frequency laser for coherent beam combining[J]. IEEE Photonics Technology Letters, 2011, 23(14): 980-982.

    [66] Williamson R S. Laser coherence control using homogeneous linewidth broadening: US20050047454A1[P]. 2003-08-29.

    [67] Suradeepa V R. Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise[J]. Optics Express, 2013, 21(4): 4677-4687.

    [68] Anderson B, Robin C, Flores A, et al. Experimental study of SBS suppression via white noise phase modulation[J]. Proceedings of SPIE, 2014, 8961: 89611W.

    [69] Robin C, Dajani I, Zernigue C, et al. Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers[J]. Proceedings of SPIE, 2013, 8601: 86010Z.

    [70] Anderson B, Flores A, Holten R, et al. Beam combining and SBS suppression in white noise and pseudorandom modulated amplifier[J]. Proceedings of SPIE, 2015, 9344: 93441U.

    [71] Anderson B, Flores A, Holten R, et al. Comparison of phase modulation schemes for coherently combined fiber amplifiers[J]. Optics Express, 2015, 23(21): 27046-27060.

    [72] Gray S, Liu A, Walton D T, et al. 502 watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express, 2007, 15(25): 17044-17050.

    [73] Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single frequency ytterbium-doped fiber master-oscillotor power amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 546-551.

    [74] Robin C, Dajani I, Chiragh F. Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output[J]. Proceedings of SPIE, 2011, 7914: 79140B.

    [75] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3): 666-669.

    [76] Ma P F, Zhou P, Ma Y X, et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality[J]. Applied Optics, 2013, 52(20): 4854-4857.

    [77] Huang L, Wu H S, Li R X, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier[J]. Optics Letters, 2017, 42(1): 1-4.

    [78] Edgecumbe J, Bjork D, Galipeau J, et al. Kilowatt-level PM amplifiers for beam combining[C]∥Frontiers in Optics, 2008, 2008: FTuJ2.

    [79] Khitrov V, Farley K, Leveille R, et al. kW level narrow linewidth Yb fiber amplifiers for beam combining[J]. Proceedings of SPIE, 2010, 7686: 76860A.

    [80] Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 2010, 35(10): 1542-1544.

    [81] Engin D, Lu W, Akbulut M, et al. 1 kW cw Yb-fiber-amplifier with <0.5 GHz linewidth and near diffraction limited beam quality for coherent combining application[J]. Proceedings of SPIE, 2011, 7914: 791407.

    [82] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[J]. Proceedings of SPIE, 2016, 9728: 972807.

    [83] Dajani I, Zeringue C, Bronder T J, et al. A theoretical treatment of two approaches to SBS mitigation with two-tone amplification[J]. Optics Express, 2008, 16(18): 14233-14247.

    [84] Dajani I, Zeringue C, Shay T M. Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 406-414.

    [85] Dajani I, Zeringue C, Lu C, et al. Stimulated Brillouin scattering suppression through laser gain competition: scalability to high power[J]. Optics Letters, 2010, 35(18): 3114-3116.

    [86] Zeringue C M, Dajani I, Moore G T. Suppression of stimulated Brillouin scattering in optical fibers through phase modulation: a time dependent model[J]. Proceedings of SPIE, 2011, 7914: 791409.

    [87] Flores A, Dajani A, Naderi N A. High power, sub-GHz, monolithic fiber amplifier based on phase modulated laser gain competition[C]∥CLEO, 2014: SW3N.3.

    [88] Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15): 17735-17744.

    [89] Naderi N A, Flores A, Anderson B M, et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition[J]. Optics Letters, 2016, 41(17): 3964-3967.

    [90] Dajani I, Flores A, Holten R, et al. Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers[J]. Proceedings of SPIE, 2016, 9728: 972801.

    [91] Naderi N A, Dajani I, Flores A. High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5): 1018-1021.

    [92] Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultra-high brightness pumps[J]. Proceedings of SPIE, 2016, 9728: 972806.

    [93] Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 2016, 41(22): 5202-5205.

    [94] Wirth C, Schreiber T, Rekas M, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[J]. Proceedings of SPIE, 2010, 7580: 75801H.

    [95] Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power[C]∥European Conference on Lasers and Electro-Optics/European Quantum Electronics Conference, 2015: CJ_11_4.

    [96] Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020.

    [97] Beier F, Hupel C, Nold J, et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 2017, 25(13): 14892-14899.

    [98] Ma P F, Tao R M, Su R T, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.

    [99] Su R T, Tao R M, Wang X L, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 2017, 14(8): 085102.

    [100] Liu G B, Yang Y F, Wang J H, et al. SBS enhancement factor improvement in 11.6 GHz linewidth, 1.5 kW Yb-doped fiber amplifier[J]. Chinese Physics Letters, 2016, 33(7): 074207.

    [101] Yang Y F, Shen H, Chen X L, et al. 2.5 kW output near diffraction limit obtained by a full-fiberized high-efficiency narrow-linewidth laser[J]. Chinese Journal of Lasers, 2016, 43(4): 0419004.

    [102] Zheng Y, Yang Y F, Zhao X, et al. Research progress on spectral beam combining technology of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201002.

    [103] Wang Y S, Feng Y J, Wang X J, et al. 6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control[J]. Applied Optics, 2017, 56(10): 2760-2765.

    Zheng Ye, Li Pan, Zhu Zhanda, Liu Xiaoxi, Wang Junlong, Wang Xuefeng. Progress in High-Power Narrow-Linewidth Fiber Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80002
    Download Citation