• Acta Optica Sinica
  • Vol. 38, Issue 8, 0828001 (2018)
Zhuqiang Li1、*, Ruifei Zhu1、2, Fang Gao1, Xiangyu Meng3, Yuan An1, and Xing Zhong1
Author Affiliations
  • 1 Chang Guang Satellite Technology Co.Ltd., Key Laboratory of Satellite Remote Sensing Application Technology of Jilin Province, Changchun, Jilin 130000, China
  • 2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 3 Jilin Provincial Land Survey & Planning Institute, Changchun, Jilin 130061, China;
  • show less
    DOI: 10.3788/AOS201838.0828001 Cite this Article Set citation alerts
    Zhuqiang Li, Ruifei Zhu, Fang Gao, Xiangyu Meng, Yuan An, Xing Zhong. Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization[J]. Acta Optica Sinica, 2018, 38(8): 0828001 Copy Citation Text show less
    Flow chart of experimental method
    Fig. 1. Flow chart of experimental method
    Hyperspectral image classification framework based on spatial-spectral 3D-CNN model
    Fig. 2. Hyperspectral image classification framework based on spatial-spectral 3D-CNN model
    Illustration of hyperspectral pixel adjacent sparse matrix. (a) Pixel adjacent sparse matrix; (b) image four-neighbor model (K=4); (c) image eight-neighbor model (K=8)
    Fig. 3. Illustration of hyperspectral pixel adjacent sparse matrix. (a) Pixel adjacent sparse matrix; (b) image four-neighbor model (K=4); (c) image eight-neighbor model (K=8)
    Classification results comparison of different algorithms on Indian Pines dataset (16 categories). (a) Pseud color image; (b) true image; (c) LDM-FL; (d) 2D-CNN; (e) 3D-CNN; (f) 3D-CNN-CRF
    Fig. 4. Classification results comparison of different algorithms on Indian Pines dataset (16 categories). (a) Pseud color image; (b) true image; (c) LDM-FL; (d) 2D-CNN; (e) 3D-CNN; (f) 3D-CNN-CRF
    Classification results comparison of different algorithms on Pavia University dataset (9 categories). (a) Pseud color image; (b) true image; (c) LDM-FL; (d) 2D-CNN; (e) 3D-CNN; (f) 3D-CNN-CRF
    Fig. 5. Classification results comparison of different algorithms on Pavia University dataset (9 categories). (a) Pseud color image; (b) true image; (c) LDM-FL; (d) 2D-CNN; (e) 3D-CNN; (f) 3D-CNN-CRF
    Classification and unknown region generalization result on Pavia Center dataset (9 categories). (a) Pseud color image; (b) true image;(c) 3D-CNN-CRF(feature dimension: 34); (d) 3D-CNN-CRF (feature dimension: 68); (e) 3D-CNN-CRF (feature dimension: 102); (f) unknown region result
    Fig. 6. Classification and unknown region generalization result on Pavia Center dataset (9 categories). (a) Pseud color image; (b) true image;(c) 3D-CNN-CRF(feature dimension: 34); (d) 3D-CNN-CRF (feature dimension: 68); (e) 3D-CNN-CRF (feature dimension: 102); (f) unknown region result
    Influence of spectral features with different dimensions on classification accuracy
    Fig. 7. Influence of spectral features with different dimensions on classification accuracy
    AlgorithmParameter
    kc1sc1pc1kc2sc2pc2fc1fc2lrkcrfλcrf
    2D-CNN3×3[1,1]2×23×3[1,2]2×24002000.005--
    3D-CNN3×3×6[1,1,4]3×3×33×3×6[1,1,2]3×3×34002000.005--
    3D-CNN-CRF3×3×6[1,1,4]3×3×33×3×6[1,1,2]3×3×34002000.00580.375
    Table 1. Related parameter settings of different algorithms
    Accuracy indicatorCategoryAlgorithm
    LDM-FLp-CNN*2D-CNN3D-CNN3D-CNN-CRF
    C197.8783.39100100100
    C289.6785.4196.3789.6097.25
    C389.6482.7678.5296.0499.88
    C493.6082.1489.4387.4095.16
    C596.4795.2493.2897.2099.14
    C610099.2596.2497.9699.05
    C777.7891.4795.4587.50100
    CAC810099.81100100100
    C910090.4492.31100100
    C1087.6082.3993.1388.5892.62
    C1198.6190.2092.1596.9799.62
    C1291.2189.8187.092.9398.10
    C1391.9387.6098.5699.01100
    C1498.9896.2096.0399.3699.76
    C1596.9291.5488.3792.0494.54
    C1694.9093.8690.2998.9198.92
    OA94.690.1692.2794.8598.18
    Kappa93.8889.9191.2194.1497.92
    Table 2. Results of accuracy comparison of different algorithms on Indian Pines dataset (16 categories) %
    Accuracy indicatorCategoryAlgorithm
    LDM-FLp-CNN*2D-CNN3D-CNN3D-CNN-CRF
    C196.0387.3497.1298.2299.01
    C299.0394.6399.4599.3499.67
    C390.4286.4789.8490.4694.17
    C491.9996.2998.4899.2899.74
    CAC597.899.6510099.4899.78
    C689.6193.2386.8590.5795.45
    C771.7593.1986.1295.0998.21
    C887.1786.4294.4696.3298.18
    C992.6810098.8598.4498.23
    OA9492.5695.697.298.6
    Kappa92.191.794.796.398.1
    Table 3. Results of accuracy comparison of different algorithms on Pavia University dataset (9 categories)%
    DatasetSize of datasetAlgorithmTime
    Feature extraction /min2D/3D-CNN training /min2D/3D-CNN testing /minCRF /s
    Indian Pines145×145×2202D-CNN3D-CNN-CRF0.60.92.63.70.851.2-26.3
    Pavia University610×340×1032D-CNN3D-CNN-CRF1.31.82.94.31.62.2-32.5
    Pavia Center1096×715×1022D-CNN3D-CNN-CRF1.72.13.45.31.72.6-42.5
    Table 4. 2D/3D-CNN training, testing and optimization time for three datasets
    Zhuqiang Li, Ruifei Zhu, Fang Gao, Xiangyu Meng, Yuan An, Xing Zhong. Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization[J]. Acta Optica Sinica, 2018, 38(8): 0828001
    Download Citation