• Chinese Journal of Lasers
  • Vol. 45, Issue 10, 1002006 (2018)
Lei Zhenglong1, Li Bingwei1, Zhu Pingguo2, Lu Wei2, and Xing Xixue2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201845.1002006 Cite this Article Set citation alerts
    Lei Zhenglong, Li Bingwei, Zhu Pingguo, Lu Wei, Xing Xixue. Effect of Wavelength on Droplet Transition Behaviors in Laser-CMT Hybrid Welding Process[J]. Chinese Journal of Lasers, 2018, 45(10): 1002006 Copy Citation Text show less
    Laser-CMT hybrid welding. (a) Equipment; (b) schematic
    Fig. 1. Laser-CMT hybrid welding. (a) Equipment; (b) schematic
    Schematic of projection area measurement of droplet
    Fig. 2. Schematic of projection area measurement of droplet
    Weld surface morphologies under different welding methods. (a) I=40 A, P=1500 W; (b) I=80 A, P=1500 W
    Fig. 3. Weld surface morphologies under different welding methods. (a) I=40 A, P=1500 W; (b) I=80 A, P=1500 W
    Weld cross sections under different welding methods. (a) Laser; (b) CMT; (c) laser-CMT
    Fig. 4. Weld cross sections under different welding methods. (a) Laser; (b) CMT; (c) laser-CMT
    Droplet transition processes under different welding methods. (a) CMT; (b) laser-CMT
    Fig. 5. Droplet transition processes under different welding methods. (a) CMT; (b) laser-CMT
    Brightness curves of droplet transition processes under different welding methods
    Fig. 6. Brightness curves of droplet transition processes under different welding methods
    Transfer period distribution of droplets under different welding methods
    Fig. 7. Transfer period distribution of droplets under different welding methods
    Effect of laser power on droplet transition in laser-CMT welding process
    Fig. 8. Effect of laser power on droplet transition in laser-CMT welding process
    Molten pool shapes under different laser powers. (a) 1500 W; (b) 2500 W
    Fig. 9. Molten pool shapes under different laser powers. (a) 1500 W; (b) 2500 W
    Effects of laser power on droplet transition under different laser wavelengths
    Fig. 10. Effects of laser power on droplet transition under different laser wavelengths
    Fiber-laser-CMT hybrid welding process
    Fig. 11. Fiber-laser-CMT hybrid welding process
    Change rate of transition frequency of droplet versus current under different laser wavelengths
    Fig. 12. Change rate of transition frequency of droplet versus current under different laser wavelengths
    Spectral measurement data of CO2 laser plasma
    Fig. 13. Spectral measurement data of CO2 laser plasma
    Boltzmann graph of plasma
    Fig. 14. Boltzmann graph of plasma
    Temperature change of laser plasma under different wavelengths
    Fig. 15. Temperature change of laser plasma under different wavelengths
    High speed camera shooting of keyhole eruption by lasers with different laser wavelengths. (a) CO2 laser; (b) fiber laser
    Fig. 16. High speed camera shooting of keyhole eruption by lasers with different laser wavelengths. (a) CO2 laser; (b) fiber laser
    ElementCMnSiSPCrCuNiMo
    S355J2W+N0.0701.2800.3600.00140.0100.4000.2700.2000.009
    NiCu 1-IG0.1011.090.4700.0120.004-0.3600.870-
    Table 1. Chemical compositions of base metal and welding wire (mass fraction, %)
    Wavelength /nmgiAi /(107 s-1)Ei /eV
    382.540250.06473.25
    392.8082790.5643.16
    452.861370.5442.74
    452.778370.0132.59
    478.608850.1031.91
    523.1388110.192.37
    Table 2. Selected spectral information
    Lei Zhenglong, Li Bingwei, Zhu Pingguo, Lu Wei, Xing Xixue. Effect of Wavelength on Droplet Transition Behaviors in Laser-CMT Hybrid Welding Process[J]. Chinese Journal of Lasers, 2018, 45(10): 1002006
    Download Citation