• Frontiers of Optoelectronics
  • Vol. 2, Issue 1, 50 (2009)
Wei CHEN1、2、*, Jinyan LI1、2, and Peixiang LU1
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2State Key Laboratory of Optical Communication Technologies and Networks, Optical Fiber Department of Fiberhome Telecommunication Technologies Co., Ltd., Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-009-0002-3 Cite this Article
    Wei CHEN, Jinyan LI, Peixiang LU. Progress of photonic crystal fibers and their applications[J]. Frontiers of Optoelectronics, 2009, 2(1): 50 Copy Citation Text show less
    References

    [1] Kaiser P, Astle HW. Low-loss single-material fibers made from pure fused silica. The Bell System Technical Journal, 1974, 53(6): 1021-1039

    [2] Birks T A, Roberts P J, Russell P S J, et al. Full 2-D photonic bandgaps in silica/air structures. Electronics Letters, 1995, 31(22): 1941-1943

    [3] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537-1539

    [4] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19):1547-1549

    [5] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961-963

    [6] Russell P S J. Photonic crystal fibers. Science, 2003, 299(5605): 358-362

    [7] Kumar V V R K, George A K, Knight J C, et al. Tellurite photonic crystal fiber. Optics Express, 2003, 11(20): 2641-2645

    [8] Ebendorff-Heidepriem H, Monro T, van Eijkelenborg M A, et al. Extruded polymer preforms for high-NA polymer microstructured fiber. In: Proceeding of OFC/NFOEC’2006, Anaheim. 2006, OThH4

    [9] Large M C J, Lwin R, Manos S, et al. Experimental studies of bandwidth behaviour in graded index microstructured polymer optical fibres. In: Proceeding of ECOC2007, Berlin. 2007, Session 4.1.3

    [10] Yao B, Ohsono K, Kurosawa Y, et al. Low-loss holey fiber. In: Proceedings of the 53rd IWCS/Focus, Pennsylvania. 2004, 135-139

    [11] Tajima K, Kurokawa K, Nakajima K, et al. Toward transmission applications with microstructured fibers. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThH1

    [12] Roberts P, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 2005, 13(1): 236-244

    [13] Saitoh K, Tsuchida Y, Koshiba M, et al. Endlessly single-mode holey fibers: the influence of core design. Optics Express, 2005, 13(26): 10833-10839

    [14] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961-963

    [15] Mortensen N A, Folkenberg J R, Nielsen M D, et al. Modal cutoff and the V parameter in photonic crystal fibers. Optics Letters, 2003, 28(20): 1879-1881

    [16] Bonati G, Voelckel H, Gabler T, et al. 1.53 kW from a single Ybdoped photonic crystal fiber laser. In: Proceeding of PhotonicsWest: Late Breaking Developments. San Jose, 2005, Session 5709-2a

    [17] Limpert J, Schreiber T, Nolte S, et al. High-power air-clad largemode- area photonic crystal fiber laser. Optics Express, 2003, 11(7): 818-823

    [18] Lavoute L, Roy P, Desfarges-Berthelemot A, et al. Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration. In: Proceeding of OFC2006, Anaheim. 2006, OFK1

    [19] Fran ois V, Aboutorabi S S. Fracture strength of air-clad microstructured fibers. In: Proceeding of OFC/NFOEC’2007, Anaheim. 2007, OThA4

    [20] Schreiber T, Limpert J, Liem A, et al. Thermo-optical analysis of airclad photonic crystal fiber lasers. In: Proceeding of OFC’2004, Anaheim. 200TuA2

    [21] Limpert J, Liem A, Reich M, et al. Low-nonlinearity singletransverse-mode ytterbium-doped photonic crystal fiber amplifier. Optics Express, 2004, 12(7):1313-1319

    [22] Suzuki K, Kubota H, Kawanishi S, et al. Optical properties of a lowloss polarization maintaining photonic crystal fiber. Optics Express, 2001, 9(13): 676-680

    [23] Mitrofanov AV, Linik Y M, Buczynski R, et al. Highly birefringent silicate glass photonic crystal fiber with polarization controlled frequency shifted output: a promising fiber light source for nonlinear raman microspectroscopy. Optics Express, 2006, 14(22): 10645-10651

    [24] Roberts P J, Williams D P, Sabert H, et al. Design of low loss and highly birefringent hollow core photonic crystal fiber. Optics Express, 2006, 14(16): 7329-7341

    [25] Islam M N, Poole C D, Gordon J P. Soliton trapping in birefringent optical fibers. Optics Letters, 1989, 14(18): 1011-1013

    [26] Zhu Z M, Brown T. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber. Optics Express, 2004, 12(5): 791-796

    [27] Chen X, Li M J, Koh J, et al. Bending properties of hole-assisted single polarization fibers. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA2

    [28] Dong X Y, Tam H Y, Shum P. Temperature-insensitive strain measurement with PM-PCF based Sagnac interferometer. In: Proceedings of ECOC’2007, Berlin. 2007, Session 3.6.6

    [29] Delgado-Pinar M, Díez A, Torres-Peiró S, et al. Guidance and polarization properties of an anisotropic microstructured fibre. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.4

    [30] Foster M, Gaeta A. Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. Optics Express, 2004, 12(14): 3137-3143

    [31] Zhang R, Teipe J, Giessen H. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14(15): 6800-6812

    [32] Takara H, Ohara T, Mori K, et al. More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. Electronics Letter, 2000, 36(25): 2089-2090

    [33] Varshney S, Fujisawa T, Saitoh K, et al. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Optics Express, 2005, 13(23): 9516-9526

    [34] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letter, 2000, 25(1): 25-27

    [35] Saitoh K, Florous N, Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected core photonic crystal fiber with low confinement losses. Optics Express, 2005, 13(21): 8365-8371

    [36] Gorbach AV, Skryabin D V, Stone J M, et al. Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum. Optics Express, 2006, 14(21): 9854-9863

    [37] Nakajima K, Matsui T, Kurokawa K, et al. High-speed and wideband transmission using dispersion-compensating/managing photonic crystal fiber and dispersion-shifted fiber. Journal of Lightwave Technology, 2007, 25(9): 2719-2726

    [38] Yang S G, Zhang Y J, He L N, et al. Experimental demonstration of very high negative chromatic dispersion dual-core photonic crystal fiber. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA6

    [39] Yang S G, Zhang Y J, Peng X Z, et al. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Optics Express, 2006, 14(7): 3015-3023

    [40] Murao T, Saitoh K, Florous N J, et al. Single-mode air-guiding photonic bandgap fiber with improved broadband transmission characteristics: the benefits of an anti-resonant core design. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, JWA4

    [41] Skorobogatiy M, Dupuis A, Guo N. Design and fabrication of ferroelectric all-polymer hollow Bragg fibers for THz guidance. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, JWA98

    [42] Bigot L, Pureur V, Jaouen Y, et al. Ytterbium-doped 2D solid core photonic bandgap fiber for laser operation at 980 nm. In: Proceedings of ECOC’2007, Berlin. 2007, Session 1.4.5

    [43] Taru T, Hou J, Knight J C. Raman gain suppression in all-solid photonic bandgap fiber. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.1

    [44] Likhachev M E, Levchenko A E, Bubnov M M, et al. Low-loss dispersion-shifted solid-core photonic bandgap bragg fiber. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.2

    [45] Goto R, Takenaga K, Matsuo S, et al. Solid photonic band-gap fiber with 400 nm bandwidth and loss below 4 dB/km at 1520 nm. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OLM7

    [46] Kosolapov A F, Semjonov S L, Denisov A N, et al. Mechanical strength and fatigue of microstructured optical fibers. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA3

    [47] Stach M, Broeng J, Petersson A, et al. 10 Gbit/s 850 nm VCSEL based data transmission over 100 m-long multimode photonic crystal fibers. In: Proceedings of ECOC’2003, Rimini, 2003, Th3.3.3

    [48] Kurokawa K, Tajima K, Nakajima K. 10 GHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, PDP5

    [49] Tajima K, Kurokawa K, Nakajima K, et al. Toward transmission applications with microstructured fibers. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThH1

    [50] Kurokawa K, Nakajima K, Tsujikawa K, et al. Penalty-free 40 Gb/s transmission in 1000 nm band over low loss PCF. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThH2

    [51] Florous N, Saitoh K, Koshiba M. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: towards high speed reconfigurable transmission platforms. Optics Express, 2006, 14(2): 901-913

    [52] Kwok C H, Chow C W, Tsang H K, et al. S/C/L-band wavelength conversion by cross-polarization modulation in a dispersionflattened nonlinear photonic-crystal fiber. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThA4

    [53] Kim G H, Han Y G, Cho H S,et al. A novel fabrication method of versatile holey fibers with low bending loss and their optical characteristics. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OWI2

    [54] Kurashima T, Hiramatsu K, Aoyama H, et al. Potential of holeassisted fibres in optical access and in-house networks. In: Proceedings of ECOC’2007, Berlin. 2007, Session 6.1.1

    Wei CHEN, Jinyan LI, Peixiang LU. Progress of photonic crystal fibers and their applications[J]. Frontiers of Optoelectronics, 2009, 2(1): 50
    Download Citation