• Advanced Photonics
  • Vol. 2, Issue 3, 036004 (2020)
Jie Chen1、2, Kazuki Nitta2、3, Xin Zhao1, Takahiko Mizuno3、4、5, Takeo Minamikawa3、4、5、6, Francis Hindle7, Zheng Zheng1、8、*, and Takeshi Yasui3、4、5、6、*
Author Affiliations
  • 1Beihang University, School of Electronic and Information Engineering, Beijing, China
  • 2Tokushima University, Graduate School of Advanced Technology and Science, Tokushima, Japan
  • 3JST, ERATO MINOSHIMA Intelligent Optical Synthesizer, Tokushima, Japan
  • 4Tokushima University, Institute of Post-LED Photonics, Tokushima, Japan
  • 5Tokushima University, Graduate School of Technology, Industrial and Social Sciences, Tokushima, Japan
  • 6Tokushima University, Research Cluster on “Multi-scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer”, Tokushima, Japan
  • 7Université du Littoral Côte d’Opale, Laboratoire de Physico-Chimie de l’Atmosphère, Dunkerque, France
  • 8Beihang University, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beijing, China
  • show less
    DOI: 10.1117/1.AP.2.3.036004 Cite this Article Set citation alerts
    Jie Chen, Kazuki Nitta, Xin Zhao, Takahiko Mizuno, Takeo Minamikawa, Francis Hindle, Zheng Zheng, Takeshi Yasui. Adaptive-sampling near-Doppler-limited terahertz dual-comb spectroscopy with a free-running single-cavity fiber laser[J]. Advanced Photonics, 2020, 2(3): 036004 Copy Citation Text show less
    References

    [1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [2] P. U. Jepsen, D. G. Cooke, M. Koch. Terahertz spectroscopy and imaging: modern techniques and applications. Laser Photonics Rev., 5, 124-166(2011).

    [3] K. Iwaszczuk, H. Heiselberg, P. U. Jepsen. Terahertz radar cross section measurements. Opt. Express, 18, 26399-26408(2010).

    [4] D. H. Auston et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett., 53, 1555-1558(1984).

    [5] P. Y. Han, X. C. Zhang. Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol., 12, 1747-1756(2001).

    [6] H. Harde, R. A. Cheville, D. Grischkowsky. Terahertz studies of collision-broadened rotational lines. J. Phys. Chem. A, 101, 3646-3660(1997).

    [7] T. Q. Luong et al. Onset of hydrogen bonded collective network of water in 1,4-dioxane. J. Phys. Chem. A, 115, 14462-14469(2011).

    [8] R. J. Falconer, A. G. Markelz. Terahertz spectroscopic analysis of peptides and proteins. J. Infrared. Millimeters Terahertz Waves, 33, 973-988(2012).

    [9] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [10] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [11] T. Yasui et al. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett., 88, 241104(2006).

    [12] T. Yasui et al. Fiber-based, hybrid terahertz spectrometer using dual fiber combs. Opt. Lett., 35, 1689-1691(2010).

    [13] Y. Hsieh et al. Terahertz comb spectroscopy traceable to microwave frequency standard. IEEE Trans. Terahertz Sci. Technol., 3, 322-330(2013).

    [14] G. Villares et al. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun., 5, 5192(2014).

    [15] Y. Yang et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica, 3, 499-502(2016).

    [16] Y. Ren et al. High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz. Appl. Phys. Lett., 98, 231109(2011).

    [17] J. T. Good et al. A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer. Rev. Sci. Instrum., 86, 103107(2015).

    [18] T. Yasui et al. Enhancement of spectral resolution and accuracy in asynchronous-optical-sampling terahertz time-domain spectroscopy for lowpressure gas-phase analysis. Opt. Express, 20, 15071-15078(2012).

    [19] X. Zhao et al. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Express, 19, 1168-1173(2011).

    [20] X. Zhao et al. Polarization-multiplexed, dual-comb all-fiber mode-locked laser. Photonics Res., 6, 853-857(2018).

    [21] Y. Liu et al. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser. Opt. Express, 24, 21392-21398(2016).

    [22] T. Ideguchi et al. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica, 3, 748-753(2016).

    [23] Q.-F. Yang et al. Counter-propagating solitons in microresonators. Nat. Photonics, 11, 560(2017).

    [24] N. B. Hébert et al. Self-corrected chip-based dual-comb spectrometer. Opt. Express, 25, 8168-8179(2017).

    [25] S. M. Link et al. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science, 356, 1164-1168(2017).

    [26] R. M. Li et al. All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter. Opt. Express, 26, 28302-28311(2018).

    [27] E. Lucas et al. Spatial multiplexing of soliton microcombs. Nat. Photonics, 12, 699-705(2018).

    [28] Y. Nakajima, Y. Hata, K. Minoshima. High-coherence ultra-broadband bidirectional dual-comb fiber laser. Opt. Express, 27, 5931-5944(2019).

    [29] X. Zhao et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. Opt. Express, 24, 21833-21845(2016).

    [30] S. Mehravar et al. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser. Appl. Phys. Lett., 108, 231104(2016).

    [31] R. Liao et al. Dual-comb spectroscopy with a single free-running thulium-doped fiber laser. Opt. Express, 26, 11046-11054(2018).

    [32] J. Chen et al. Dual-comb spectroscopy of methane based on a free-running erbium-doped fiber laser. Opt. Express, 27, 11406-11412(2019).

    [33] J. Nürnberg et al. An unstabilized femtosecond semiconductor laser for dual-comb spectroscopy of acetylene. Opt. Express, 27, 3190-3199(2019).

    [34] G. Hu et al. Dual terahertz comb spectroscopy with a single free-running fiber laser. Sci. Rep., 8, 11155(2018).

    [35] R. D. Baker et al. Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser. Sci. Rep., 8, 14802(2018).

    [36] G. B. Rieker et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290-298(2014).

    [37] D. Burghoff, N. Han, J. H. Shin. Generalized method for the computational phase correction of arbitrary dual comb signals. Opt. Lett., 44, 2966-2969(2019).

    [38] L. A. Sterczewski et al. Computational Doppler-limited dual-comb spectroscopy with a free-running all-fiber laser. APL Photonics, 4, 116102(2019).

    [39] T. Yasui et al. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers. Sci. Rep., 5, 10786(2015).

    [40] J. Roy et al. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express, 20, 21932(2012).

    [41] G. Ycas et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2  μm. Nat. Photonics, 12, 202-208(2018). https://doi.org/10.1038/s41566-018-0114-7

    [42] G. Ycas et al. Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths. Optica, 6, 165-168(2019).

    [43] L. A. Sterczewski, J. Westberg, G. Wysocki. Computational coherent averaging for free-running dual-comb spectroscopy. Opt. Express, 27, 23875-23893(2019).

    [44] N. B. Hébert et al. Self-correction limits in dual-comb interferometry. IEEE J. Quantum Electron., 55, 8700311(2019).

    [45] C. Janke et al. Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors. Opt. Lett., 30, 1405-1407(2005).

    [46] T. Yasui, E. Saneyoshi, T. Araki. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett., 87, 061101(2005).

    [47] H. G. Von Ribbeck et al. Spectroscopic THz near-field microscope. Opt. Express, 16, 3430-3438(2008).

    [48] M. Kessler et al. Microwave spectra and molecular structures of methyl cyanide and methyl isocyanide. Phys. Rev., 79, 54-56(1950).

    [49] T. Yasui et al. Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation. Optica, 2, 460-467(2015).

    [50] Y. D. Hsieh et al. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs. Sci. Rep., 4, 3816(2014).

    [51] H. M. Pickett et al. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transfer, 60, 883-890(1998).

    [52] A. S. Dudaryonok, N. N. Lavrentieva, J. V. Buldyreva. CH3CN self-broadening coefficients and their temperature dependences for the Earth and Titan atmospheres. Icarus, 250, 76-82(2015). https://doi.org/10.1016/j.icarus.2014.11.020

    [53] A. S. Dudaryonok, N. N. Lavrentieva, J. V. Buldyreva. N2-broadening coefficients of CH3CN. Icarus, 256, 30-36(2015). https://doi.org/10.1016/j.icarus.2015.04.025

    [54] S. Svanberg, M. W. Sigrist, J. D. Winefordner, I. M. Kolthoff. Differential absorption lidar (DIAL). Air Monitoring by Spectroscopic Techniques(1994).

    CLP Journals

    [1] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    Jie Chen, Kazuki Nitta, Xin Zhao, Takahiko Mizuno, Takeo Minamikawa, Francis Hindle, Zheng Zheng, Takeshi Yasui. Adaptive-sampling near-Doppler-limited terahertz dual-comb spectroscopy with a free-running single-cavity fiber laser[J]. Advanced Photonics, 2020, 2(3): 036004
    Download Citation