• Photonics Research
  • Vol. 10, Issue 11, 2471 (2022)
Wei Li1, Bingjian Wang2, Tengfei Wu3, Feihu Xu4, and Xiaopeng Shao1,*
Author Affiliations
  • 1School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China
  • 2School of Physics, Xidian University, Xi’an 710071, China
  • 3Laboratoire Kastler Brossel, ENS–Université PSL, CNRS, Sorbonne Université, College de France, F-75005 Paris, France
  • 4Hefei National Laboratory for Physical Sciences at Microscale and School of Physical Science, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1364/PRJ.466065 Cite this Article Set citation alerts
    Wei Li, Bingjian Wang, Tengfei Wu, Feihu Xu, Xiaopeng Shao, "Lensless imaging through thin scattering layers under broadband illumination," Photonics Res. 10, 2471 (2022) Copy Citation Text show less
    References

    [1] S. Rotter, S. Gigan. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys., 89, 015005(2017).

    [2] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics, 9, 563-571(2015).

    [3] J.-H. Park, Z. Yu, K. Lee, P. Lai, Y. Park. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications. APL Photon., 3, 100901(2018).

    [4] J. Kubby, S. Gigan, M. Cui. Wavefront Shaping for Biomedical Imaging(2019).

    [5] N. Bender, H. Ylmaz, Y. Bromberg, H. Cao. Creating and controlling complex light. APL Photon., 4, 110806(2019).

    [6] P. Lai, L. Wang, J. W. Tay, L. V. Wang. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics, 9, 126-132(2015).

    [7] C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, A. D. Stone. Correlation-enhanced control of wave focusing in disordered media. Nat. Phys., 13, 497-502(2017).

    [8] S. Jeong, Y.-R. Lee, W. Choi, S. Kang, J. H. Hong, J.-S. Park, Y.-S. Lim, H.-G. Park, W. Choi. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering. Nat. Photonics, 12, 277-283(2018).

    [9] A. Boniface, B. Blochet, J. Dong, S. Gigan. Noninvasive light focusing in scattering media using speckle variance optimization. Optica, 6, 1381-1385(2019).

    [10] E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, A. Mosk. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett., 106, 193905(2011).

    [11] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, A. P. Mosk. Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica, 2, 424-429(2015).

    [12] J. A. Newman, Q. Luo, K. J. Webb. Imaging hidden objects with spatial speckle intensity correlations over object position. Phys. Rev. Lett., 116, 073902(2016).

    [13] N. H. Valencia, S. Goel, W. McCutcheon, H. Defienne, M. Malik. Unscrambling entanglement through a complex medium. Nat. Phys., 16, 1112-1116(2020).

    [14] P. Pai, J. Bosch, M. Kühmayer, S. Rotter, A. P. Mosk. Scattering invariant modes of light in complex media. Nat. Photonics, 15, 431-434(2021).

    [15] D. Bouchet, S. Rotter, A. P. Mosk. Maximum information states for coherent scattering measurements. Nat. Phys., 17, 564-568(2021).

    [16] A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, A. Aubry. Spatio-temporal imaging of light transport in highly scattering media under white light illumination. Optica, 3, 1160-1166(2016).

    [17] A. G. Vesga, M. Hofer, N. K. Balla, H. B. De Aguiar, M. Guillon, S. Brasselet. Focusing large spectral bandwidths through scattering media. Opt Express, 27, 28384-28394(2019).

    [18] M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, S. Gigan. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett., 116, 253901(2016).

    [19] A. Boniface, I. Gusachenko, K. Dholakia, S. Gigan. Rapid broadband characterization of scattering medium using hyperspectral imaging. Optica, 6, 274-279(2019).

    [20] W. Xiong, C.-W. Hsu, H. Cao. Spatio-temporal correlations in multimode fibers for pulse delivery. IEEE Photonics Society Summer Topical Meeting Series (SUM), 1-2(2019).

    [21] J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [22] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [23] I. Freund, M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328-2331(1988).

    [24] S. Feng, C. Kane, P. A. Lee, A. D. Stone. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett., 61, 834-837(1988).

    [25] J. Goodman. Introduction to Fourier Optics(2005).

    [26] J. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).

    [27] E. Akkermans, G. Montambaux. Mesoscopic Physics of Electrons and Photons(2007).

    [28] K. Monakhova, K. Yanny, N. Aggarwal, L. Waller. Spectral diffusercam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 7, 1298-1307(2020).

    [29] X. Li, J. A. Greenberg, M. E. Gehm. Single-shot multispectral imaging through a thin scatterer. Optica, 6, 864-871(2019).

    [30] S. K. Sahoo, D. Tang, C. Dang. Single-shot multispectral imaging with a monochromatic camera. Optica, 4, 1209-1213(2017).

    [31] K. Midorikawa. Progress on table-top isolated attosecond light sources. Nat. Photonics, 16, 267-278(2022).

    [32] S. Zheng, H. Wang, S. Dong, F. Wang, G. Situ. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network. Photon. Res., 9, B220-B228(2021).

    [33] P. Arjmand, O. Katz, S. Gigan, M. Guillon. Three-dimensional broadband light beam manipulation in forward scattering samples. Opt. Express, 29, 6563-6581(2021).

    [34] E. Edrei, G. Scarcelli. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media. Sci. Rep., 6, 33558(2016).

    [35] T. Wu, O. Katz, X. Shao, S. Gigan. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis. Opt. Lett., 41, 5003-5006(2016).

    [36] S. Divitt, D. F. Gardner, A. T. Watnik. Imaging around corners in the mid-infrared using speckle correlations. Opt. Express, 28, 11051-11064(2020).

    [37] D. Lu, Q. Xing, M. Liao, G. Situ, X. Peng, W. He. Single-shot noninvasive imaging through scattering medium under white-light illumination. Opt. Lett., 47, 1754-1757(2022).

    [38] J. C. Dainty. Laser Speckle and Related Phenomena, 9(2013).

    [39] D. R. Luke. Relaxed averaged alternating reflections for diffraction imaging. Inverse Prob., 21, 37-50(2004).

    [40] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett., 3, 27-29(1978).

    [41] J. R. Fienup. Phase retrieval algorithms: a personal tour. Appl. Opt., 52, 45-56(2013).

    [42] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, J. C. Spence. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B, 68, 140101(2003).

    [43] A. Buades, B. Coll, J.-M. Morel. Non-local means denoising. Image Process. Line, 1, 208-212(2011).

    [44] J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. Advances in Neural Information Processing Systems, 2080-2088(2009).

    [45] H. Xu, C. Caramanis, S. Sanghavi. Robust PCA via outlier pursuit. IEEE Trans. Inf. Theory, 58, 3047-3064(2012).

    [46] S. Marchesini. Invited article: a unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum., 78, 011301(2007).

    [47] M. R. Rai, A. Vijayakumar, J. Rosen. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt. Express, 26, 18143-18154(2018).

    [48] V. Anand, S. H. Ng, T. Katkus, S. Juodkazis. Spatio-spectral-temporal imaging of fast transient phenomena using a random array of pinholes. Adv Photon. Res, 2, 2000032(2021).

    [49] Z. T. Harmany, R. F. Marcia, R. M. Willett. This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms-theory and practice. IEEE Trans. Image Process., 21, 1084-1096(2011).

    [50] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3, 1-122(2011).

    [51] A. Beck, M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2, 183-202(2009).

    [52] R. J. Hanisch, R. L. White, R. L. Gilliland. Deconvolution of hubbles space telescope images and spectra. Deconvolution of Images and Spectra, 310-360(1996).

    [53] Y. Shi, Y. Liu, W. Sheng, D. Zhu. Extending the imaging range through scattering layers to the entire correlation range. Appl. Opt., 59, 1633-1640(2020).

    [54] Y. Shi, Y. Liu, J. Wang, T. Wu. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax. Appl. Phys. Lett., 110, 231101(2017).

    [55] Y. Zhang, Z. Lu, J. Wu, X. Lin, D. Jiang, Y. Cai, J. Xie, Y. Wang, T. Zhu, X. Ji, Q. Dai. Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy. Nat. Commun., 12, 6391(2021).

    [56] J. Huijts, S. Fernandez, D. Gauthier, M. Kholodtsova, A. Maghraoui, K. Medjoubi, A. Somogyi, W. Boutu, H. Merdji. Broadband coherent diffractive imaging. Nat. Photonics, 14, 618-622(2020).

    [57] C. A. Metzler, F. Heide, P. Rangarajan, M. M. Balaji, A. Viswanath, A. Veeraraghavan, R. G. Baraniuk. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica, 7, 63-71(2020).

    [58] M. I. Akhlaghi, A. Dogariu. Tracking hidden objects using stochastic probing. Optica, 4, 447-453(2017).

    [59] M. Cua, E. H. Zhou, C. Yang. Imaging moving targets through scattering media. Opt Express, 25, 3935-3945(2017).

    [60] A. J. F. Siegert. On the Fluctuations in Signals Returned by Many Independently Moving Scatterers(1943).

    [61] M. Nazarathy, J. Shamir. Fourier optics described by operator algebra. J. Opt. Soc. Am A, 70, 150-159(1980).

    [62] Y. Wang, J. Li, P. Stoica. Spectral Analysis of Signals: The Missing Data Case(2006).

    [63] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [64] S. Schott, J. Bertolotti, J.-F. Léger, L. Bourdieu, S. Gigan. Characterization of the angular memory effect of scattered light in biological tissues. Opt. Express, 23, 13505-13516(2015).

    [65] H. Liu, Z. Liu, M. Chen, S. Han, L. V. Wang. Physical picture of the optical memory effect. Photon. Res., 7, 1323-1330(2019).

    [66] M. Kadobianskyi, I. N. Papadopoulos, T. Chaigne, R. Horstmeyer, B. Judkewitz. Scattering correlations of time-gated light. Optica, 5, 389-394(2018).

    [67] H. Ylmaz, C. W. Hsu, A. Goetschy, S. Bittner, S. Rotter, A. Yamilov, H. Cao. Angular memory effect of transmission eigenchannels. Phys. Rev. Lett., 123, 203901(2019).

    Wei Li, Bingjian Wang, Tengfei Wu, Feihu Xu, Xiaopeng Shao, "Lensless imaging through thin scattering layers under broadband illumination," Photonics Res. 10, 2471 (2022)
    Download Citation