• Photonics Research
  • Vol. 10, Issue 11, 2471 (2022)
Wei Li1, Bingjian Wang2, Tengfei Wu3, Feihu Xu4, and Xiaopeng Shao1、*
Author Affiliations
  • 1School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China
  • 2School of Physics, Xidian University, Xi’an 710071, China
  • 3Laboratoire Kastler Brossel, ENS–Université PSL, CNRS, Sorbonne Université, College de France, F-75005 Paris, France
  • 4Hefei National Laboratory for Physical Sciences at Microscale and School of Physical Science, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1364/PRJ.466065 Cite this Article Set citation alerts
    Wei Li, Bingjian Wang, Tengfei Wu, Feihu Xu, Xiaopeng Shao. Lensless imaging through thin scattering layers under broadband illumination[J]. Photonics Research, 2022, 10(11): 2471 Copy Citation Text show less
    References

    [1] S. Rotter, S. Gigan. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys., 89, 015005(2017).

    [2] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics, 9, 563-571(2015).

    [3] J.-H. Park, Z. Yu, K. Lee, P. Lai, Y. Park. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications. APL Photon., 3, 100901(2018).

    [4] J. Kubby, S. Gigan, M. Cui. Wavefront Shaping for Biomedical Imaging(2019).

    [5] N. Bender, H. Ylmaz, Y. Bromberg, H. Cao. Creating and controlling complex light. APL Photon., 4, 110806(2019).

    [6] P. Lai, L. Wang, J. W. Tay, L. V. Wang. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics, 9, 126-132(2015).

    [7] C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, A. D. Stone. Correlation-enhanced control of wave focusing in disordered media. Nat. Phys., 13, 497-502(2017).

    [8] S. Jeong, Y.-R. Lee, W. Choi, S. Kang, J. H. Hong, J.-S. Park, Y.-S. Lim, H.-G. Park, W. Choi. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering. Nat. Photonics, 12, 277-283(2018).

    [9] A. Boniface, B. Blochet, J. Dong, S. Gigan. Noninvasive light focusing in scattering media using speckle variance optimization. Optica, 6, 1381-1385(2019).

    [10] E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, A. Mosk. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett., 106, 193905(2011).

    [11] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, A. P. Mosk. Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica, 2, 424-429(2015).

    [12] J. A. Newman, Q. Luo, K. J. Webb. Imaging hidden objects with spatial speckle intensity correlations over object position. Phys. Rev. Lett., 116, 073902(2016).

    [13] N. H. Valencia, S. Goel, W. McCutcheon, H. Defienne, M. Malik. Unscrambling entanglement through a complex medium. Nat. Phys., 16, 1112-1116(2020).

    [14] P. Pai, J. Bosch, M. Kühmayer, S. Rotter, A. P. Mosk. Scattering invariant modes of light in complex media. Nat. Photonics, 15, 431-434(2021).

    [15] D. Bouchet, S. Rotter, A. P. Mosk. Maximum information states for coherent scattering measurements. Nat. Phys., 17, 564-568(2021).

    [16] A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, A. Aubry. Spatio-temporal imaging of light transport in highly scattering media under white light illumination. Optica, 3, 1160-1166(2016).

    [17] A. G. Vesga, M. Hofer, N. K. Balla, H. B. De Aguiar, M. Guillon, S. Brasselet. Focusing large spectral bandwidths through scattering media. Opt Express, 27, 28384-28394(2019).

    [18] M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, S. Gigan. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett., 116, 253901(2016).

    [19] A. Boniface, I. Gusachenko, K. Dholakia, S. Gigan. Rapid broadband characterization of scattering medium using hyperspectral imaging. Optica, 6, 274-279(2019).

    [20] W. Xiong, C.-W. Hsu, H. Cao. Spatio-temporal correlations in multimode fibers for pulse delivery. IEEE Photonics Society Summer Topical Meeting Series (SUM), 1-2(2019).

    [21] J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [22] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [23] I. Freund, M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328-2331(1988).

    [24] S. Feng, C. Kane, P. A. Lee, A. D. Stone. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett., 61, 834-837(1988).

    [25] J. Goodman. Introduction to Fourier Optics(2005).

    [26] J. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).

    [27] E. Akkermans, G. Montambaux. Mesoscopic Physics of Electrons and Photons(2007).

    [28] K. Monakhova, K. Yanny, N. Aggarwal, L. Waller. Spectral diffusercam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 7, 1298-1307(2020).

    [29] X. Li, J. A. Greenberg, M. E. Gehm. Single-shot multispectral imaging through a thin scatterer. Optica, 6, 864-871(2019).

    [30] S. K. Sahoo, D. Tang, C. Dang. Single-shot multispectral imaging with a monochromatic camera. Optica, 4, 1209-1213(2017).

    [31] K. Midorikawa. Progress on table-top isolated attosecond light sources. Nat. Photonics, 16, 267-278(2022).

    [32] S. Zheng, H. Wang, S. Dong, F. Wang, G. Situ. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network. Photon. Res., 9, B220-B228(2021).

    [33] P. Arjmand, O. Katz, S. Gigan, M. Guillon. Three-dimensional broadband light beam manipulation in forward scattering samples. Opt. Express, 29, 6563-6581(2021).

    [34] E. Edrei, G. Scarcelli. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media. Sci. Rep., 6, 33558(2016).

    [35] T. Wu, O. Katz, X. Shao, S. Gigan. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis. Opt. Lett., 41, 5003-5006(2016).

    [36] S. Divitt, D. F. Gardner, A. T. Watnik. Imaging around corners in the mid-infrared using speckle correlations. Opt. Express, 28, 11051-11064(2020).

    [37] D. Lu, Q. Xing, M. Liao, G. Situ, X. Peng, W. He. Single-shot noninvasive imaging through scattering medium under white-light illumination. Opt. Lett., 47, 1754-1757(2022).

    [38] J. C. Dainty. Laser Speckle and Related Phenomena, 9(2013).

    [39] D. R. Luke. Relaxed averaged alternating reflections for diffraction imaging. Inverse Prob., 21, 37-50(2004).

    [40] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett., 3, 27-29(1978).

    [41] J. R. Fienup. Phase retrieval algorithms: a personal tour. Appl. Opt., 52, 45-56(2013).

    [42] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, J. C. Spence. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B, 68, 140101(2003).

    [43] A. Buades, B. Coll, J.-M. Morel. Non-local means denoising. Image Process. Line, 1, 208-212(2011).

    [44] J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. Advances in Neural Information Processing Systems, 2080-2088(2009).

    [45] H. Xu, C. Caramanis, S. Sanghavi. Robust PCA via outlier pursuit. IEEE Trans. Inf. Theory, 58, 3047-3064(2012).

    [46] S. Marchesini. Invited article: a unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum., 78, 011301(2007).

    [47] M. R. Rai, A. Vijayakumar, J. Rosen. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt. Express, 26, 18143-18154(2018).

    [48] V. Anand, S. H. Ng, T. Katkus, S. Juodkazis. Spatio-spectral-temporal imaging of fast transient phenomena using a random array of pinholes. Adv Photon. Res, 2, 2000032(2021).

    [49] Z. T. Harmany, R. F. Marcia, R. M. Willett. This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms-theory and practice. IEEE Trans. Image Process., 21, 1084-1096(2011).

    [50] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3, 1-122(2011).

    [51] A. Beck, M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2, 183-202(2009).

    [52] R. J. Hanisch, R. L. White, R. L. Gilliland. Deconvolution of hubbles space telescope images and spectra. Deconvolution of Images and Spectra, 310-360(1996).

    [53] Y. Shi, Y. Liu, W. Sheng, D. Zhu. Extending the imaging range through scattering layers to the entire correlation range. Appl. Opt., 59, 1633-1640(2020).

    [54] Y. Shi, Y. Liu, J. Wang, T. Wu. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax. Appl. Phys. Lett., 110, 231101(2017).

    [55] Y. Zhang, Z. Lu, J. Wu, X. Lin, D. Jiang, Y. Cai, J. Xie, Y. Wang, T. Zhu, X. Ji, Q. Dai. Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy. Nat. Commun., 12, 6391(2021).

    [56] J. Huijts, S. Fernandez, D. Gauthier, M. Kholodtsova, A. Maghraoui, K. Medjoubi, A. Somogyi, W. Boutu, H. Merdji. Broadband coherent diffractive imaging. Nat. Photonics, 14, 618-622(2020).

    [57] C. A. Metzler, F. Heide, P. Rangarajan, M. M. Balaji, A. Viswanath, A. Veeraraghavan, R. G. Baraniuk. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica, 7, 63-71(2020).

    [58] M. I. Akhlaghi, A. Dogariu. Tracking hidden objects using stochastic probing. Optica, 4, 447-453(2017).

    [59] M. Cua, E. H. Zhou, C. Yang. Imaging moving targets through scattering media. Opt Express, 25, 3935-3945(2017).

    [60] A. J. F. Siegert. On the Fluctuations in Signals Returned by Many Independently Moving Scatterers(1943).

    [61] M. Nazarathy, J. Shamir. Fourier optics described by operator algebra. J. Opt. Soc. Am A, 70, 150-159(1980).

    [62] Y. Wang, J. Li, P. Stoica. Spectral Analysis of Signals: The Missing Data Case(2006).

    [63] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [64] S. Schott, J. Bertolotti, J.-F. Léger, L. Bourdieu, S. Gigan. Characterization of the angular memory effect of scattered light in biological tissues. Opt. Express, 23, 13505-13516(2015).

    [65] H. Liu, Z. Liu, M. Chen, S. Han, L. V. Wang. Physical picture of the optical memory effect. Photon. Res., 7, 1323-1330(2019).

    [66] M. Kadobianskyi, I. N. Papadopoulos, T. Chaigne, R. Horstmeyer, B. Judkewitz. Scattering correlations of time-gated light. Optica, 5, 389-394(2018).

    [67] H. Ylmaz, C. W. Hsu, A. Goetschy, S. Bittner, S. Rotter, A. Yamilov, H. Cao. Angular memory effect of transmission eigenchannels. Phys. Rev. Lett., 123, 203901(2019).

    Wei Li, Bingjian Wang, Tengfei Wu, Feihu Xu, Xiaopeng Shao. Lensless imaging through thin scattering layers under broadband illumination[J]. Photonics Research, 2022, 10(11): 2471
    Download Citation