• Advanced Photonics
  • Vol. 3, Issue 2, 024001 (2021)
Dandan Wen1, Jasper J. Cadusch1, Jiajun Meng1, and Kenneth B. Crozier1、2、3、*
Author Affiliations
  • 1University of Melbourne, Department of Electrical and Electronic Engineering, Victoria, Australia
  • 2University of Melbourne, School of Physics, Victoria, Australia
  • 3University of Melbourne, Australian Research Council, Centre of Excellence for Transformative Meta-Optical Systems, Victoria, Australia
  • show less
    DOI: 10.1117/1.AP.3.2.024001 Cite this Article Set citation alerts
    Dandan Wen, Jasper J. Cadusch, Jiajun Meng, Kenneth B. Crozier. Light field on a chip: metasurface-based multicolor holograms[J]. Advanced Photonics, 2021, 3(2): 024001 Copy Citation Text show less
    References

    [1] D. Gabor. Microscopy by reconstructed wave-fronts. Proc. R. Soc. London A, 197, 454-487(1949).

    [2] P. Hariharan. Basics of Holography(2002).

    [3] J. Upatnieks, J. Marks, R. Fedorowicz. Color holograms for white light reconstruction. Appl. Phys. Lett., 8, 286-287(1966).

    [4] H. Chen, F. T. Yu. One-step rainbow hologram. Opt. Lett., 2, 85-87(1978).

    [5] F. Yu, G. Gerhart. White light transmission color holography: a review. Opt. Eng., 24, 245812(1985).

    [6] M. Ozaki, J.-I. Kato, S. Kawata. Surface-plasmon holography with white-light illumination. Science, 332, 218-220(2011).

    [7] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [8] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [9] D. Lin et al. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).

    [10] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [11] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [12] Z. Yang et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun., 9, 4607(2018).

    [13] L. Wang et al. Grayscale transparent metasurface holograms. Optica, 3, 1504-1505(2016).

    [14] E. Schonbrun, K. Seo, K. B. Crozier. Reconfigurable imaging systems using elliptical nanowires. Nano Lett., 11, 4299-4303(2011).

    [15] S.-Q. Li et al. Generalized method of images and reflective color generation from ultrathin multipole resonators. ACS Photonics, 5, 2374-2383(2018).

    [16] D. J. Roth et al. 3D full-color image projection based on reflective metasurfaces under incoherent illumination. Nano Lett., 20, 4481-4486(2020).

    [17] S. Chang, X. Guo, X. Ni. Optical metasurfaces: progress and applications. Annu. Rev. Mater. Res., 48, 279-302(2018).

    [18] G. Y. Lee, J. Sung, B. Lee. Recent advances in metasurface hologram technologies. ETRI J., 41, 10-22(2019).

    [19] F. Ding, A. Pors, S. I. Bozhevolnyi. Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys., 81, 026401(2018).

    [20] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [21] M. Kim, A. M. H. Wong, G. V. Eleftheriades. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys. Rev. X, 4, 041042(2014).

    [22] C. Pfeiffer et al. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett., 14, 2491-2497(2014).

    [23] F. Aieta et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [24] F. Ding, R. Deshpande, S. I. Bozhevolnyi. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci. Appl., 7, 17178(2018).

    [25] W. T. Chen et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett., 14, 225-230(2014).

    [26] A. Zhan et al. Low-contrast dielectric metasurface optics. ACS Photonics, 3, 209-214(2016).

    [27] J. S. Park et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett., 19, 8673-8682(2019).

    [28] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [29] E. Arbabi et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3, 628-633(2016).

    [30] P. Gutruf et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano, 10, 133-141(2016).

    [31] A. Forouzmand, H. Mosallaei. Dynamic beam control via Mie-resonance based phase-change metasurface: a theoretical investigation. Opt. Express, 26, 17948-17963(2018).

    [32] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [33] Q. L. Yang et al. Mie-resonant membrane Huygens’ metasurfaces. Adv. Funct. Mater., 30, 1906851(2020).

    [34] A. Leitis et al. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater., 30, 1910259(2020).

    [35] D. Arslan et al. Angle-selective all-dielectric Huygens’ metasurfaces. J. Phys. D Appl. Phys., 50, 434002(2017).

    [36] W. Y. Zhao et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci. Rep., 6, 30613(2016).

    [37] S. Pancharatnam. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. Sec. A, 44, 398-417(1956).

    [38] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London A, 392, 45-57(1984).

    [39] Z. E. Bomzon et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett., 27, 1141-1143(2002).

    [40] F. Yue et al. High-resolution grayscale image hidden in a laser beam. Light Sci. Appl., 7, 17129(2018).

    [41] G. Y. Lee et al. Metasurface eyepiece for augmented reality. Nat. Commun., 9, 4562(2018).

    [42] F. Y. Yue et al. Highly sensitive polarization rotation measurement through a high-order vector beam generated by a metasurface. Adv. Mater. Technol., 5, 1901008(2020).

    [43] D. Wen et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [44] J. Deng et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting. ACS Nano, 13, 9237-9246(2019).

    [45] Q. Wei et al. Broadband multiplane holography based on plasmonic metasurface. Adv. Opt. Mater., 5, 1700434(2017).

    [46] K. Huang et al. Silicon multi‐meta‐holograms for the broadband visible light. Laser Photonics Rev., 10, 500-509(2016).

    [47] S. Choudhury et al. Pancharatnam-berry phase manipulating metasurface for visible color hologram based on low loss silver thin film. Adv. Opt. Mater., 5, 1700196(2017).

    [48] C. Choi et al. Hybrid state engineering of phase-change metasurface for all-optical cryptography. Adv. Funct. Mater., 31, 2007210(2020).

    [49] Q. Wang et al. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics, 5, 599-606(2018).

    [50] H. R. Ren et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948-955(2020).

    [51] X. J. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [52] L. Liu et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater., 26, 5031-5036(2014).

    [53] G. Y. Lee et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 10, 4237-4245(2018).

    [54] K. E. Chong et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ACS Photonics, 3, 514-519(2016).

    [55] M. Fratz, P. Fischer, D. M. Giel. Full phase and amplitude control in computer-generated holography. Opt. Lett., 34, 3659-3661(2009).

    [56] M. Fratz, D. M. Giel, P. Fischer. Digital polarization holograms with defined magnitude and orientation of each pixel’s birefringence. Opt. Lett., 34, 1270-1272(2009).

    [57] L. Huang et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [58] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [59] F. Walter et al. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett., 17, 3171-3175(2017).

    [60] Z.-L. Deng et al. Diatomic metasurface for vectorial holography. Nano Lett., 18, 2885-2892(2018).

    [61] R. Zhao et al. Multichannel vectorial holographic display and encryption. Light Sci. Appl., 7, 95(2018).

    [62] E. Arbabi et al. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics, 6, 2712-2718(2019).

    [63] B. Wang et al. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica, 4, 1368-1371(2017).

    [64] Y. Hu et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett., 20, 994-1002(2019).

    [65] K. T. Lim et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun., 10, 25(2019).

    [66] D. Wen et al. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images. Adv. Funct. Mater., 30, 1906415(2020).

    [67] B. Walther et al. Spatial and spectral light shaping with metamaterials. Adv. Mater., 24, 6300-6304(2012).

    [68] Q. Wang et al. Polarization and frequency multiplexed terahertz meta‐holography. Adv. Opt. Mater., 5, 1700277(2017).

    [69] A. C. Overvig et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl., 8, 92(2019).

    [70] X. Li et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv., 2, e1601102(2016).

    [71] W. Wan, J. Gao, X. Yang. Full-color plasmonic metasurface holograms. ACS Nano, 10, 10671-10680(2016).

    [72] X. Li et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun., 6, 6984(2015).

    [73] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-246(1972).

    [74] X. Zhang et al. Colorful metahologram with independently controlled images in transmission and reflection spaces. Adv. Funct. Mater., 29, 1809145(2019).

    [75] L. Jin et al. Noninterleaved metasurface for (26-1) spin-and wavelength-encoded holograms. Nano Lett., 18, 8016-8024(2018).

    [76] L. Jin et al. Dielectric multi-momentum meta-transformer in the visible. Nat. Commun., 10, 4789(2019).

    [77] F. Qin et al. Broadband full-color multichannel hologram with geometric metasurface. Opt. Express, 26, 11577-11586(2018).

    [78] B. Wang et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett., 16, 5235-5240(2016).

    [79] W. Zhao et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt. Lett., 41, 147-150(2016).

    [80] F. Zhang et al. Simultaneous full‐color printing and holography enabled by centimeter‐scale plasmonic metasurfaces. Adv. Sci., 7, 1903156(2020).

    [81] Q. Wei et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett., 19, 8964-8971(2019).

    [82] Y. Bao et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci. Appl., 8, 95(2019).

    [83] M. Song et al. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics, 7, 323-331(2018).

    [84] G. Yoon et al. Crypto-display’ in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 12, 6421-6428(2018).

    [85] Y.-W. Huang et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett., 15, 3122-3127(2015).

    [86] Z. Shi et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett., 18, 2420-2427(2018).

    [87] S. Sun et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 11, 4445-4452(2017). https://doi.org/10.1021/acsnano.7b00415

    [88] B. Yang et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels. Adv. Opt. Mater., 6, 1701009(2018).

    [89] I. Koirala, S.-S. Lee, D.-Y. Choi. Highly transmissive subtractive color filters based on an all-dielectric metasurface incorporating TiO2 nanopillars. Opt. Express, 26, 18320-18330(2018). https://doi.org/10.1364/OE.26.018320

    [90] Z. Xie et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics, 4, 2158-2164(2017).

    [91] C. Min et al. Plasmonic nano‐slits assisted polarization selective detour phase meta‐hologram. Laser Photonics Rev., 10, 978-985(2016).

    [92] M. Khorasaninejad et al. Broadband and chiral binary dielectric meta-holograms. Sci. Adv., 2, e1501258(2016).

    [93] Y. Hu et al. 3D-integrated metasurfaces for full-colour holography. Light Sci. Appl., 8, 86(2019).

    [94] J. S. Milne et al. Widely tunable MEMS-based Fabry–Perot filter. J. Microelectromech. Syst., 18, 905-913(2009).

    [95] Z. L. Deng et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv. Funct. Mater., 30, 1910610(2020).

    [96] Y. Montelongo et al. Plasmonic nanoparticle scattering for color holograms. Proc. Natl. Acad. Sci. U. S. A., 111, 12679-12683(2014).

    [97] Z. Huang, D. L. Marks, D. R. Smith. Out-of-plane computer-generated multicolor waveguide holography. Optica, 6, 119-124(2019).

    [98] F. Beck et al. Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt. Express, 19, A146-A156(2011).

    [99] S. Sun et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces. ACS Nano, 12, 2151-2159(2018).

    [100] J. Bohn et al. Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces. Nano Lett., 18, 3461-3465(2018).

    [101] M. R. Shcherbakov et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun., 8, 17(2017).

    [102] Y.-W. Huang et al. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [103] N. A. Butakov et al. Broadband electrically tunable dielectric resonators using metal–insulator transitions. ACS Photonics, 5, 4056-4060(2018).

    [104] L. Zhu et al. Flexible photonic metastructures for tunable coloration. Optica, 2, 255-258(2015).

    [105] A. Dasgupta, J. Gao, X. Yang. Atomically thin nonlinear transition metal dichalcogenide holograms. Nano Lett., 19, 6511-6516(2019).

    [106] A. Dasgupta, X. Yang, J. Gao. Nonlinear beam shaping with binary phase modulation on patterned WS2 monolayer. ACS Photonics, 7, 2506-2514(2020).

    Dandan Wen, Jasper J. Cadusch, Jiajun Meng, Kenneth B. Crozier. Light field on a chip: metasurface-based multicolor holograms[J]. Advanced Photonics, 2021, 3(2): 024001
    Download Citation