• Chinese Journal of Quantum Electronics
  • Vol. 27, Issue 5, 513 (2010)
Chang-shui CHEN1、*, Fang WANG1, Song-hao LIU1, and Yang-de ZHANG2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    CHEN Chang-shui, WANG Fang, LIU Song-hao, ZHANG Yang-de. Review of frequency stabilization technology of semiconductor laser[J]. Chinese Journal of Quantum Electronics, 2010, 27(5): 513 Copy Citation Text show less
    References

    [1] Wieman C E, Hollberg L. Using diode lasers for atomic physics [J]. Rev. Sci. Instrum., 1991, 62(1): 1-20.

    [2] Macadam K B, Steimbaeh A, Wieman C. A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb [J]. Am. J. Phy., 1992, 60(12): 1098-1111.

    [8] Nakano K. Frequency stabilization of a semiconductor laser using both Rb saturated absorption profiles and double optical feedback systems [C]. Proc. of SPIE, 2007, 6829: 68290R-1-11.

    [12] Valenzuela R A, Cimini L J, Wilson R W, et al. Frequency stabilization of AlGaAs lasers to absorption spectrum of rubidium using Zeeman effect [J]. Electron. Lett., 1988, 24(12): 725-726.

    [15] Affolderbach C, Mileti G. A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation [J]. Rev. Sci. Instrum., 2005, 76(7): 073108.

    [18] Bjorklund G C. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions [J]. Optics Letters, 1980, 5(1): 15-17.

    [19] Hall J L, Hollberg L, Baer T, et al. Optical heterodyne saturation spectroscopy [J]. Appl. Phys. Lett., 1981, 39(11): 680-683.

    [22] Sasaki W, Yashiro H, Miura Y, et al. A compact and efficient hyper coherent light source of visible violet laser diode based on Pound-Drever-Hall technique [J]. Time and Frequency Metrology, 2007, 6673: Q66730.

    [23] Raj R K, Bloch D, Snyder J J, et al. High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing [J]. Phys. Rev. Lett., 1980, 44(19): 1251-1254.

    [29] Corwin K L, Lu Z T, et al. Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor [J]. Appl. Opt., 1998, 37(15): 3295-3298.

    [30] Overstreet K R, Frankin J, Shaffer J P. Zeeman effect spectroscopically locked Cs diode laser system for atomic physics [J]. Rev. Sci. Instrum., 2004, 75(11): 4749-4753.

    [31] Reeves J M, Garcia O, Sackett C A. Temperature stability of a dichroic atomic vapor laser lock [J]. Appl. Opt., 2006, 45(2): 372-376.

    [32] Wasik G, Gawlik W, Zachorowski J, et al. Laser frequency stabilization by Doppler-free magnetic dichroism [J]. Appl. Phys. B-Lasers and Opt., 2002, 75(6-7): 613-619.

    [33] Tiwari V B, Mishra S R, Rawat H S, et al. Laser frequency stabilization and large detuning by Doppler-free dichroic lock technique: Application to atom cooling [J]. Pramana-J. Phys., 2005, 65(3): 403-411.

    [35] Ooijen E D Van, Katgert G. Laser frequency stabilization using Doppler-free bichromatic spectroscopy [J]. Appl. Phys. B-Lasers and Optics, 2004, 79(1): 57-59.

    [36] Gunawardena M, Hess P W, Strait J, et al. A frequency stabilization technique for diode lasers based on frequency-shifted beams from an acousto-optic modulator[J]. Rev. Sci. Instrum., 2008, 79(10): 103110.

    CHEN Chang-shui, WANG Fang, LIU Song-hao, ZHANG Yang-de. Review of frequency stabilization technology of semiconductor laser[J]. Chinese Journal of Quantum Electronics, 2010, 27(5): 513
    Download Citation