• Acta Optica Sinica
  • Vol. 33, Issue 5, 514002 (2013)
Yang Qing1、*, Huo Yujing1, Duan Yusheng1, and Zhang Yanyan2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201333.0514002 Cite this Article Set citation alerts
    Yang Qing, Huo Yujing, Duan Yusheng, Zhang Yanyan. Double-Longitudinal-Mode Continuous-Wave Laser with Ultra-Large Frequency Difference Used for Narrowband Terahertz-Wave Generation[J]. Acta Optica Sinica, 2013, 33(5): 514002 Copy Citation Text show less
    References

    [1] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1: 26~33

    [2] Masayoshi Tonouch. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97~105

    [3] Li Qi, Yao Rui, Ding Shenghui et al.. Experiment on 2.52 THz transmission-mode imaging for concealed objects[J]. Chinese J. Lasers, 2011, 38(7): 0711001

    [4] B. A. Knyazev, V. S. Cherkassky, E. N. Chesnokov et al.. Novosibirsk terahertz free electron laser: facility development and new experimental results at the user stations[C]. In: 36th International Conference on IRMMW-THz, 2011

    [5] Tan Ping, Huang Jiang, Liu Kaifeng et al.. Terahertz radiation sources based on free electron lasers and their applications[J]. Science China Information Sciences, 2012, 55(1): 1~15

    [6] B.S. Williams, S. Kumar, Q. Hu et al.. High-power terahertz quantum-cascade lasers[J]. Electron. Lett., 2006, 42(2): 89~91

    [7] S. Fathololoumi, E. Dupont, C. W. I. Chan et al.. Terahertz quantum cascade lasers operating up to about 200 K with optimized oscillator strength and improved injection tunneling[J]. Opt. Express, 2012, 20(4): 3866~3876

    [8] M. Tani, Y. Hirota, C.T. Que et al.. Novel terahertz photoconductive antennas[J]. International Journal of Infrared and Millimeter Waves, 2006, 27(4): 531~546

    [9] Neda Khiabani, Yi Huang, Yao-chun Shen et al.. THz photoconductive antennas in pulsed systems and CW systems[C]. In: 2012 IEEE International Workshop on Antenna Technology (iWAT), 2012

    [10] A. Schneider, M. Neis, M. Stillhart et al.. Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment [J]. J. Opt. Soc. Am. B, 2006, 23(9): 1822~1835

    [11] J. D. Rowley, J. K. Wahlstrand, K. T. Zawilski et al.. Terahertz generation by optical rectification in uniaxial birefringent crystals[J]. Opt. Express, 2012, 20(15): 16968~16973

    [12] Kodo Kawase, Jun-ichi Shikata, Hiromasa Ito. Terahertz wave parametric source[J]. J. Phys. D: Appl. Phys., 2002, 35(3): R1~R14

    [13] Liu Lei, Li Xiao, Liu Tong et al.. Progress of terahertz wave parametric oscillator[J]. Laser & Optoelectronics Progress, 2012, 49(9): 090001

    [14] R. L. Aggarwal, B. Lax, H. R. Fetterman et al.. CW generation of tunable narrow-band far-infrared radiation[J]. J. Appl. Phys., 1974, 45(9): 3972~3974

    [15] M. A. Leigh, W. Shi, J. Zong et al.. Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal[J]. IEEE Photon. Technol. Lett., 2009, 21(1): 27~29

    [16] T. Taniuchi, J. Shikata, H. Ito. Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator [J]. Electron. Lett., 2000, 36(16): 1414~1416

    [17] M. Tang, H. Minamide, Y. Wang et al.. Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser[J]. Opt. Express, 2011, 19(2): 779~786

    [18] H. Y. Shen, H. Su. Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals[J]. J. Appl. Phys., 1999, 86(12): 6647~665

    [19] Tian Qian, Liao Yanbiao, Sun Liqun. Engineering Optics [M]. Beijing: Tsinghua University Press, 2006

    [20] Shen Yuenron. Nonlinear Infrared Generation [M]. Beijing: Science Press, 1977. 29~37

    [21] M. Walther, K. Jensby, S. R. Keiding et al.. Far-infrared properties of DAST[J]. Opt. Lett., 2000, 25(12): 911~913

    [22] Zheng Fanghua, Liu Huan, Li Xifu et al.. Simultaneous dual-wavelength quasi-continuous-wave laser-diode-end-pumped NdYAG laser for terahertz wave source[J]. Chinese J. Lasers, 2008, 35(2): 200~205

    CLP Journals

    [1] Sun Mengdie, Tan Shaoyang, Guo Fei, Liu Songtao, Lu Dan, Ji Chen. Photonic Integrated Circuit for Generation of Terahertz Pumping Source by Difference-Frequency Generation[J]. Laser & Optoelectronics Progress, 2015, 52(9): 91302

    [2] Xing Junhong, Jiao Mingxing. Design and Experimental Study of Tunable Dual-Frequency Nd∶YAG Laser with Large Frequency Difference[J]. Laser & Optoelectronics Progress, 2015, 52(5): 51402

    [3] Hu Miao, Sun Xiao, Li Qiliang, Zhou Xuefang, Ying Na, Wei Yizhen, Lu Yang, Yang Guowei, Zheng Yaoyuan, Wei Mian. Investigation of Mode Competition in Dual-Frequency Nd∶YVO4 Microchip Laser[J]. Chinese Journal of Lasers, 2015, 42(7): 702009

    [4] Gong Mengfan, Xiao Guangzong, Fu Yangying, Zhang Bin. Characters of Orthogonal Polarized He-Ne Laser with Integrated Y-shaped Cavity Research[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121406

    [5] Hu Miao, Zhang Fei, Zhang Xiang, Zheng Yaoyuan, Sun Xiao, Xu Yaxi, Xu Weizhong, Ge Jianhong, Xiang Zhen. Amplification of Dual-Frequency Laser for Photonic Millimeter-Wave Signal Generation[J]. Acta Optica Sinica, 2014, 34(11): 1114003

    [6] Jia Peng, Liu Xiaoli, Chen Yongyi, Qin Li, Li Xiushan, Zhang Jianwei, Liu Yun, Ning Yongqiang, Wang Lijun. Study of Dual-Wavelength Distributed Bragg Reflection Semiconductor Laser with High Order Bragg Gratings[J]. Chinese Journal of Lasers, 2015, 42(8): 802007

    Yang Qing, Huo Yujing, Duan Yusheng, Zhang Yanyan. Double-Longitudinal-Mode Continuous-Wave Laser with Ultra-Large Frequency Difference Used for Narrowband Terahertz-Wave Generation[J]. Acta Optica Sinica, 2013, 33(5): 514002
    Download Citation