[4] MA G, SUN J, ASLANI F, et al. Review on electromagnetic wave absorbing capacity improvement of cementitious material[J]. Constr Build Mater, 2020, 262: 120907.1-120907.15.
[5] WANG D. A dynamic optimization on economic energy efficiency in development: A numerical case of China[J]. Energy, 2014, 66: 181-188.
[6] LI B, JI Z, XIE S, et al. Electromagnetic wave absorption properties of carbon black/cement-based composites filled with porous glass pellets[J]. J Mater Sci: Mater Electron, 2019, 30(13): 12416-12425.
[8] ZHANG X, SUN W. Electromagnetic shielding and absorption properties of fiber reinforced cementitious composites[J]. J Wuhan Univ Technol-Mater Sci Ed, 2012, 27(1): 172-176.
[9] HAN B, ZHANG L, ZHANG C, et al. Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials[J]. Constr Build Mater, 2016, 125: 479-489.
[16] LI L, DONG S, DONG X, et al. Electromagnetic wave shielding/ absorption performances of cementitious composites incorporating carbon nanotube metamaterial with helical chirality[J]. J Compos Mater, 2020, 54(25): 3857-3870.
[17] LIU T-T, CAO M-Q, FANG Y-S, et al. Green building materials lit up by electromagnetic absorption function: A review[J]. J Mater Sci Technol, 2022, 112: 329-344.
[19] KIM G M, PARK S M, RYU G U, et al. Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber[J]. Cem Concr Compos, 2017, 82: 165-175.
[20] BASMACI A N. Behaviors of electromagnetic wave propagation in double-walled carbon nanotubes[J]. Materials (Basel), 2021, 14(15): 4069.
[21] BARROS E B, JORIO A, SAMSONIDZE G G, et al. Review on the symmetry-related properties of carbon nanotubes[J]. Phys Rep, 2006, 431(6): 261-302.
[22] FAKHARPOUR M, KARIMI R. Electromagnetic wave absorption properties of MWCNTs-COOH/cement composites with different shapes of chiral, armchair and zigzag[J]. Fullerenes, Nanotubes Carbon Nanostruct, 2020, 29(5): 386-393.
[23] HERRERA-CARBAJAL A, RODRIGUEZ-LUGO V, HERNANDEZ- AVILA J, et al. A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes[J]. Phys Chem Chem Phys, 2021, 23(23): 13075-13086.
[25] MICHELI D, PASTORE R, VRICELLA A, et al. Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band[J]. Mater Sci Eng: B, 2014, 188: 119-29.
[26] ZHANG W, ZHENG Q, WANG D, et al. Electromagnetic properties and mechanisms of multiwalled carbon nanotubes modified cementitious composites[J]. Constr Build Mater, 2019, 208: 427-443.
[28] KIM H K, NAM I W, LEE H K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume[J]. Compos Struct, 2014, 107: 60-69.
[29] NAM I W, CHOI J H, KIM C G, et al. Fabrication and design of electromagnetic wave absorber composed of carbon nanotube- incorporated cement composites[J]. Compos Struct, 2018, 206: 439-447.
[30] AL-DAHAWI A, ZTRK O, EMAMI F, et al. Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials[J]. Constr Build Mater, 2016, 104: 160-168.
[31] YUE L, YANG Y, ZHOU Q, et al. Broadband electromagnetic wave absorbing performance by designing the foam structure and double-layer for cement-based composites containing MWCNTs[J]. Cem Concr Compos, 2022, 131: 104595.
[32] WANG B, GUO Z, HAN Y, et al. Electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites[J]. Constr Build Mater, 2013, 46: 98-103.
[33] LIU X, WANG N, WANG Z. Effects of the absorber, thickness and surface roughness on the electromagnetic wave absorption characteristics of magnesium phosphate cement[J]. Constr Build Mater, 2022, 344: 128149.
[39] GORACCI G, J S D. Elucidation of conduction mechanism in graphene nanoplatelets (GNPs)/cement composite using dielectric spectroscopy[J]. Materials (Basel), 2020, 13(2): 275.
[40] SUN Y, ZHOU T, PENG Y, et al. Design and performance research on dual layer cement based absorber reinforced with graphene nanosheets and manganese-zinc ferrite[J]. Mater Sci, 2021, 27(4): 477-482.
[41] CUI X, SUN S, HAN B, et al. Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites[J]. Compos Part A: Appl Sci Manuf, 2017, 93: 49-58.
[42] DEND S, AI H, WANG B. Research on the electromagnetic wave absorption properties of GNPs/EMD cement composite[J]. Constr Build Mater, 2022, 321: 126398.
[43] KHUSHNOOD R A, AHMAD S, SAVI P, et al. Improvement in electromagnetic interference shielding effectiveness of cement composites using carbonaceous nano/micro inerts[J]. Constr Build Mater, 2015, 85: 208-216.
[44] LV X, DUAN Y, CHEN G. Electromagnetic wave absorption properties of cement-based composites filled with graphene nano-platelets and hollow glass microspheres[J]. Constr Build Mater, 2018, 162: 280-285.
[48] LIU P, ZHANG Y, YAN J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption[J]. Chem Eng J, 2019, 368: 285-298.
[49] ZHANG Y, HUANG Y, CHEN H, et al. Composition and structure control of ultralight graphene foam for high-performance microwave absorption[J]. Carbon, 2016, 105: 438-447.
[50] JIAO D, LESAGE K, YARDIMCI M Y, et al. Structural evolution of cement paste with nano-Fe3O4 under magnetic field-Effect of concentration and particle size of nano-Fe3O4[J]. Cem Concr Compos, 2021, 120: 104036.
[51] ADEBAYO L L, SOLEIMANI H, YAHYA N, et al. Recent advances in the development OF Fe3O4-BASED microwave absorbing materials[J]. Ceram Int, 2020, 46(2): 1249-1268.
[56] HE Y, LU L, SUN K, et al. Electromagnetic wave absorbing cement-based composite using Nano-Fe3O4 magnetic fluid as absorber[J]. Cem Concr Compos, 2018, 92: 1-6.
[57] FLOREZ R, COLORADO H A, ALAJO A, et al. The material characterization and gamma attenuation properties of Portland cement-Fe3O4 composites for potential dry cask applications[J]. Prog Nucl Energy, 2019, 111: 65-73.
[58] WANG D, YANG P, HOU P, et al. Cement-based composites endowed with novel functions through controlling interface microstructure from Fe3O4@SiO2 nanoparticles[J]. Cem Concr Compos, 2017, 80: 268-276.
[59] LAND G, STEPHAN D. Controlling cement hydration with nanoparticles[J]. Cem Concr Compos, 2015, 57: 64-67.
[60] HORSZCZARUK E, ALEKSANDRZAK M, CENDROWSKI K, et al. Mechanical properties cement based composites modified with nano-Fe3O4/SiO2[J]. Constr Build Mater, 2020, 251: 118945.
[61] LI Q, PANG J, WANG B, et al. Preparation, characterization and microwave absorption properties of barium-ferrite-coated fly-ash cenospheres[J]. Adv Powder Technol, 2013, 24(1): 288-294.
[65] JAHAN N, KHANDAKER J I, LIBA S I, et al. Structural analysis through cations distributions of diamagnetic Al3+ ions substituted Ni-Zn-Co ferrites[J]. J Alloys Compd, 2021, 869: 159226.
[67] YOO J-E, KANG Y-M. Electromagnetic wave absorbing properties of Ni-Zn ferrite powder-epoxy composites in GHz range[J]. J Magnet Magnet Mater, 2020, 513: 167075.
[68] LI Y, GUAN H, BAO Y, et al. Ni0.6Zn0.4Fe2O4/Ti3C2Tx nanocomposite modified epoxy resin coating for improved microwave absorption and impermeability on cement mortar[J]. Constr Build Mater, 2021, 310: 125213.
[69] SHI Y, JING H, LIU B, et al. Electromagnetic (EM) wave absorption properties of cementitious building composites containing MnZn ferrite: Preferable effective bandwidth and thickness via iron and graphite addition[J]. J Magn Magn Mater, 2022, 560: 169555.
[72] MOHAMMADIAN R, RAHMANI S, SEYED DORRAJI M S, et al. Microwave absorption properties of GO nanosheets-BaFe12O19-NiO nanocomposites based on epoxy resin: optimization using Taguchi methodology[J]. J Mater Sci: Mater Electron, 2017, 29(6): 4583-4595.
[73] SHEPHERD P, MALLICK K K, GREEN R J. Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation[J]. J Magn Magn Mater, 2007, 311(2): 683-692.