• Acta Optica Sinica
  • Vol. 41, Issue 9, 0906002 (2021)
Guangwei Fu*, Chang Liu, Mengmei Wang, Bilin Wang, Ying Wang, Xinghu Fu, Wa Jin, and Weihong Bi
Author Affiliations
  • Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
  • show less
    DOI: 10.3788/AOS202141.0906002 Cite this Article Set citation alerts
    Guangwei Fu, Chang Liu, Mengmei Wang, Bilin Wang, Ying Wang, Xinghu Fu, Wa Jin, Weihong Bi. Tapered Multimode Fiber Temperature Sensor Based on Surface Graphene Modification[J]. Acta Optica Sinica, 2021, 41(9): 0906002 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [2] Balandin A A, Ghosh S, Bao W Z et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 8, 902-907(2008). http://europepmc.org/abstract/MED/18284217

    [3] Cai W, Moore A L, Zhu Y et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[J]. Nano Letters, 10, 1645-1651(2010). http://europepmc.org/abstract/MED/20405895

    [4] Prezzi D, Varsano D, Ruini A et al. Optical properties of graphene nanoribbons: the role of many-body effects[J]. Physical Review B, 77, 041404(2008). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112060435.html

    [5] Liu Z B, Wang Y, Zhang X L et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes[J]. Applied Physics Letters, 94, 021902(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4837496

    [6] Fürst J A, Pedersen J G, Flindt C et al. Electronic properties of graphene antidot lattices[J]. New Journal of Physics, 11, 095020(2009). http://arxiv.org/abs/0907.0122

    [7] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 10, 569-581(2011). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=63005003&site=ehost-live

    [8] Sadeghi M M, Pettes M T, Shi L et al. Thermal transport in graphene[J]. Solid State Communications, 152, 1321-1330(2012).

    [9] Yang K L. Research on electro-optical modulating properties based on graphene photonic crystal fiber[D]. Qinhuangdao: Yanshan University, 8-17(2018).

    [10] Zhang J, Liao G Z, Jin S S et al. All-fiber-optic temperature sensor based on reduced graphene oxide[J]. Laser Physics Letters, 11, 035901(2014). http://adsabs.harvard.edu/abs/2014LaPhL..11c5901Z

    [11] Sun X H, Sun Q Z, Jia W H et al. Graphene coated microfiber for temperature sensor. [C]∥International Photonics and OptoElectronics Meetings, June 18-21, 2014, Wuhan, China. Washington, D.C.: OSA, FF4B, 3(2014).

    [12] Li L, Feng Z Y, Qiao X G et al. Ultrahigh sensitive temperature sensor based on Fabry-Pérot interference assisted by a graphene diaphragm[J]. IEEE Sensors Journal, 15, 505-509(2015). http://ieeexplore.ieee.org/document/6914538

    [13] Sun Q Z, Sun X H, Jia W H et al. Graphene-assisted microfiber for optical-power-based temperature sensor[J]. IEEE Photonics Technology Letters, 28, 383-386(2016). http://ieeexplore.ieee.org/document/7307139

    [14] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4946711

    [15] Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers[J]. ACS Nano, 5, 5855-5863(2011). http://pubs.acs.org/doi/10.1021/nn201622e

    [16] Yu R W, Alaee R, Lederer F et al. Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene[J]. Physical Review B, 90, 085409(2014).

    [17] Li L F, Hu J Y, Li F Q et al. Effect of thermal light source and homogenous magnetic field on graphene resistance[J]. Microelectronics, 50, 253-256(2020).

    [18] Wu Y, Yao B C, Zhang A Q et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 39, 1235-1237(2014). http://www.ncbi.nlm.nih.gov/pubmed?term=24690715

    [19] Wei R X, Wang Y W, Jiang L W et al. Detection of chemical vapor deposition-prepared graphene by surface plasmon polariton imaging[J]. Acta Optica Sinica, 39, 1124002(2019).

    [20] Mo J, Feng G Y, Liao Y et al. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 30, 081003(2018).

    [21] Shah M K, Ye S W, Zou X H et al. Graphene-assisted electro absorption optical modulator using D-microfiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 3400305(2017). http://ieeexplore.ieee.org/document/7523282/

    [22] Zhao M F, Jiao L Z, Dong D M et al. The analysis of sensitivity for fiber-based evanescent wave sensors[J]. Piezoelectrics & Acoustooptics, 34, 23-26(2012).

    [23] Hu X L, Shi Z X, Wang Y et al. Packaging and characteristics of a tapered fiber sensor for refractive-index measurements[J]. Journal of Russian Laser Research, 39, 200-206(2018). http://link.springer.com/article/10.1007/s10946-018-9708-2

    Guangwei Fu, Chang Liu, Mengmei Wang, Bilin Wang, Ying Wang, Xinghu Fu, Wa Jin, Weihong Bi. Tapered Multimode Fiber Temperature Sensor Based on Surface Graphene Modification[J]. Acta Optica Sinica, 2021, 41(9): 0906002
    Download Citation