• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1208002 (2021)
Hongwei Chu and Dechun Li*
Author Affiliations
  • School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • show less
    DOI: 10.3788/CJL202148.1208002 Cite this Article Set citation alerts
    Hongwei Chu, Dechun Li. Recent Progress on Fabrication, Characterization and Nonlinear Optical Properties of Bismuth-Based Nanomaterials[J]. Chinese Journal of Lasers, 2021, 48(12): 1208002 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004). http://europepmc.org/abstract/MED/15499015

    [2] Schedin F, Geim A K, Morozov S V et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 6, 652-655(2007).

    [3] Novoselov K S, Fal'ko V I, Colombo L et al. A roadmap for graphene[J]. Nature, 490, 192-200(2012).

    [4] Georgakilas V, Otyepka M, Bourlinos A B et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications[J]. Chemical Reviews, 112, 6156-6214(2012).

    [5] Bao Q L, Zhang H, Wang Y et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 19, 3077-3083(2009). http://arxiv.org/abs/0910.5820

    [6] Chu H W, Zhao S Z, Li T et al. Dual-wavelength passively Q-switched nd, mg∶LiTaO3 laser with a monolayer graphene as saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 343-347(2015).

    [7] Xu M S, Liang T, Shi M M et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 113, 3766-3798(2013). http://pubs.acs.org/doi/pdf/10.1021/cr300263a

    [8] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005). http://pubs.acs.org/servlet/linkout?suffix=ref126/cit126&dbid=8&doi=10.1021%2Facsnano.5b05040&key=16281030

    [9] Kim K, Choi J Y, Kim T et al. A role for graphene in silicon-based semiconductor devices[J]. Nature, 479, 338-344(2011). http://smartsearch.nstl.gov.cn/paper_detail.html?id=165a457c8bc07b607f577a79bede74b7

    [10] Pan L X, Xia Q L. Research progress of novel 2D semiconductor material arsenene[J]. Materials Reports, 33, 22-27(2019).

    [11] Li H, Wu J, Yin Z Y et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets[J]. Accounts of Chemical Research, 47, 1067-1075(2014). http://europepmc.org/abstract/med/24697842

    [12] Peng B, Ang P K, Loh K P. Two-dimensional dichalcogenides for light-harvesting applications[J]. Nano Today, 10, 128-137(2015). http://www.sciencedirect.com/science/article/pii/S1748013215000080

    [13] Radisavljevic B, Radenovic A, Brivio J et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 6, 147-150(2011).

    [14] Mak K F, Lee C, Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010). http://www.ncbi.nlm.nih.gov/pubmed/21230799

    [15] Splendiani A, Sun L, Zhang Y B et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 10, 1271-1275(2010). http://nsr.oxfordjournals.org/external-ref?access_num=10.1021/nl903868w&link_type=DOI

    [16] Butler S Z, Hollen S M, Cao L Y et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano, 7, 2898-2926(2013). http://nsr.oxfordjournals.org/external-ref?access_num=10.1021/nn400280c&link_type=DOI

    [17] Li L K, Yu Y J, Ye G J et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 9, 372-377(2014). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=24584274

    [18] Huang Y X, Zhang S L, Guo S Y et al. Group V materials: from bulk to monolayer[J]. Chinese Science Bulletin, 62, 2233-2251(2017).

    [19] Island J O, Steele G A, van der Zant H S J et al. Environmental instability of few-layer black phosphorus[J]. 2D Materials, 2, 011002(2015).

    [20] Castellanos-Gomez A, Vicarelli L, Prada E et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 1, 025001(2014). http://arxiv.org/abs/1403.0499

    [21] Yao M Y, Zhu F, Han C Q et al. Topologically nontrivial bismuth(111) thin films[J]. Scientific Reports, 6, 21326(2016).

    [22] Takayama A, Sato T, Souma S et al. Anomalous Rashba effect of bismuth(111) thin films studied by high-resolution spin-and angle-resolved photoemission spectroscopy[J]. Journal of Vacuum Science & Technology B, 30, 04E107(2012).

    [23] Kou L Z, Tan X, Ma Y D et al. Tetragonal bismuth bilayer: a stable and robust quantum spin hall insulator[J]. 2D Materials, 2, 045010(2015). http://arxiv.org/abs/1510.07761

    [24] Zhang S L, Xie M Q, Li F Y et al. Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities[J]. Angewandte Chemie, 128, 1698-1701(2016). http://onlinelibrary.wiley.com/doi/pdf/10.1002/ange.201507568

    [25] Aktürk E, Aktürk O Ü, Ciraci S. Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties[J]. Physical Review B, 94, 014115(2016). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.014115

    [26] Ersan F, Aktürk E, Ciraci S. Stable single-layer structure of group-V elements[J]. Physical Review B, 94, 245417(2016).

    [27] Kadioglu Y, Kilic S B, Demirci S et al. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects[J]. Physical Review B, 96, 245424(2017). http://arxiv.org/abs/1711.10264v1

    [28] Liu M Y, Huang Y, Chen Q Y et al. Strain and electric field tunable electronic structure of buckled bismuthene[J]. RSC Advances, 7, 39546-39555(2017). http://pubs.rsc.org/en/content/articlelanding/2017/ra/c7ra05787c/unauth

    [29] Chen R B, Jang D J, Lin M C et al. Optical properties of monolayer bismuthene in electric fields[J]. Optics Letters, 43, 6089-6092(2018). http://arxiv.org/abs/1803.04649

    [30] Sun Z L, Chu H W, Zhao S Z et al. Optical properties enhancement of buckled bismuthene in mid-infrared region: a theoretical first-principle study[J]. Molecular Simulation, 46, 1004-1010(2020). http://www.tandfonline.com/doi/full/10.1080/08927022.2020.1798003

    [31] Ogrin Y F, Lutskii V N, Elinson M I. Observation of quantum size effects in thin bismuth films[J]. JETP Letters, 3, 71-73(1966). http://adsabs.harvard.edu/abs/1966JETPL...3...71O

    [32] Yang F Y, Liu K, Hong K et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films[J]. Science, 284, 1335-1337(1999). http://www.europepmc.org/abstract/MED/10334983

    [33] Nagao T, Doi T, Sekiguchi T et al. Epitaxial growth of single-crystal ultrathin films of bismuth on Si(111)[J]. Japanese Journal of Applied Physics, 39, 4567-4570(2000).

    [34] Xiao S H, Wei D H, Jin X F. Bi(111) thin film with insulating interior but metallic surfaces[J]. Physical Review Letters, 109, 166805(2012). http://www.ncbi.nlm.nih.gov/pubmed/23215113

    [35] Walker E S, Na S R, Jung D et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films[J]. Nano Letters, 16, 6931-6938(2016). http://pubs.acs.org/doi/10.1021/acs.nanolett.6b02931

    [36] Zhao W, Zhao Y, Zhu B B et al. Anisotropic thermoelectric effect and field-effect devices in epitaxial bismuthene on Si(111)[J]. Nanotechnology, 31, 475202(2020). http://www.researchgate.net/publication/343644164_Anisotropic_thermoelectric_effect_and_field-effect_devices_in_epitaxial_bismuthene_on_Si_111

    [37] Reis F, Li G, Dudy L et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material[J]. Science, 357, 287-290(2017). http://www.ncbi.nlm.nih.gov/pubmed/28663438

    [38] Nagao T, Yaginuma S, Saito M et al. Strong lateral growth and crystallization via two-dimensional allotropic transformation of semi-metal Bi film[J]. Surface Science, 590, 247-252(2005). http://www.sciencedirect.com/science/article/pii/S0039602805006266

    [39] Kawakami N, Lin C L, Kawai M et al. One-dimensional edge state of Bi thin film grown on Si(111)[J]. Applied Physics Letters, 107, 031602(2015). http://scitation.aip.org/content/aip/journal/apl/107/3/10.1063/1.4927206

    [40] Drozdov I K, Alexandradinata A, Jeon S et al. One-dimensional topological edge states of bismuth bilayers[J]. Nature Physics, 10, 664-669(2014).

    [41] Pumera M, Sofer Z. 2Dmonoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus[J]. Advanced Materials, 29, 1605299(2017).

    [42] Scott S A, Kral M V, Brown S A. A crystallographic orientation transition and early stage growth characteristics of thin Bi films on HOPG[J]. Surface Science, 587, 175-184(2005).

    [43] Lu Y H, Xu W T, Zeng M G et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110)[J]. Nano Letters, 15, 80-87(2015). http://europepmc.org/abstract/med/25495154

    [44] Tian J, Guo L, Shen S et al. Research progress on preparation ofgraphene by liquid exfoliation method[J]. China Powder Science and Technology, 23, 45-49(2017).

    [45] Lou H, Qin D X, Wang Z Z et al. The progress in preparation of graphene by liquid phase exfoliation[J]. Guangdong Chemical Industry, 46, 95-96(2019).

    [46] Yuan Z Z, Liu D M, Tian N et al. Structure, preparation and properties of phosphorene[J]. Acta Chimica Sinica, 74, 488-497(2016).

    [47] Lu L, Liang Z M, Wu L M et al. Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability[J]. Laser & Photonics Reviews, 12, 1870012(2018). http://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201700221

    [48] Zhou J, Chen J C, Chen M X et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries[J]. Advanced Materials, 31, 1807874(2019). http://onlinelibrary.wiley.com/doi/10.1002/adma.201807874

    [49] Lu L, Wang W H, Wu L M et al. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation[J]. ACS Photonics, 4, 2852-2861(2017). http://pubs.acs.org/doi/10.1021/acsphotonics.7b00849

    [50] Chai T, Li X H, Feng T C et al. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field[J]. Nanoscale, 10, 17617-17622(2018). http://www.ncbi.nlm.nih.gov/pubmed/30204206

    [51] Wang Y Z, Huang W C, Zhao J L et al. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect[J]. Journal of Materials Chemistry C, 7, 871-878(2019). http://pubs.rsc.org/en/content/articlelanding/2019/tc/c8tc05513k

    [52] Wang C, Wang L, Li X H et al. Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser[J]. Nanotechnology, 30, 025204(2019). http://www.ncbi.nlm.nih.gov/pubmed/30411714

    [53] Guo B, Wang S H, Wu Z X et al. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber[J]. Optics Express, 26, 22750-22760(2018).

    [54] Guo P L, Li X H, Chai T et al. Few-layer bismuthene for robust ultrafast photonics in C-band optical communications[J]. Nanotechnology, 30, 354002(2019). http://www.researchgate.net/publication/333073331_Few-layer_bismuthene_for_robust_ultrafast_photonics_in_C-Band_optical_communications

    [55] Feng T, Li X, Chai T et al. Few-layer bismuthene for 1-μm ultrafast laser applications[EB/OL]. (2019-05-23)[2021-01-22]. https://doi.org/10.3762/bxiv.2019.28.v1

    [56] Pan H, Huang W C, Chu H W et al. Bismuthene quantum dots based optical modulator for MIR lasers at 2 μm[J]. Optical Materials, 102, 109830(2020). http://www.sciencedirect.com/science/article/pii/S0925346720301786

    [57] Feng X Y, Hao Q Q, Lin Y K et al. Bismuth nanosheets Q-switched Nd∶BGO laser operating at 1065 nm with 880 nm laser-diode pumping[J]. Optics & Laser Technology, 127, 106152(2020).

    [58] Dong L, Huang W C, Chu H W et al. Passively Q-switched near-infrared lasers with bismuthene quantum dots as the saturable absorber[J]. Optics & Laser Technology, 128, 106219(2020).

    [59] Yang Q Q, Liu R T, Huang C et al. 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers[J]. Nanoscale, 10, 21106-21115(2018). http://www.ncbi.nlm.nih.gov/pubmed/30325397

    [60] Yang Y C, Niu Y. Fabrication of Bi nanoparticles through electrochemical method and investigation on its lithium storage property[J]. Guangdong Chemical Industry, 46, 50-51(2019).

    [61] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-121(1961).

    [62] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).

    [63] Sun Y L, Wang X, Liu J et al. Research progress in nonlinear optical materials[J]. Science & Technology in Chemical Industry, 19, 51-54(2011).

    [64] Ma Z J, Wei R F, Hu Z L et al. 2D materials and quasi-2D materials: nonlinear optical properties and corresponding applications[J]. Chinese Journal of Lasers, 44, 0703002(2017).

    [65] Shi J C, Chu H W, Li Y et al. Synthesis and nonlinear optical properties of semiconducting single-walled carbon nanotubes at 1 μm[J]. Nanoscale, 11, 7287-7292(2019).

    [66] Pan H, Cao L H, Chu H W et al. Broadband nonlinear optical response of InSe nanosheets for the pulse generation from 1 to 2 μm[J]. ACS Applied Materials & Interfaces, 11, 48281-48289(2019). http://www.ncbi.nlm.nih.gov/pubmed/31834767

    [67] Chu H W, Li Y, Wang C et al. Recent investigations on nonlinear absorption properties of carbon nanotubes[J]. Nanophotonics, 9, 761-781(2020). http://www.degruyter.com/view/journals/nanoph/ahead-of-print/article-10.1515-nanoph-2020-0085/article-10.1515-nanoph-2020-0085.xml?rskey=PS6qyw&result=15&intcmp=trendmd

    [68] Ling W J, Sun R, Chen C et al. Passively Q-switched mode-locked Tm∶LuAG laser with reflective MoS2 saturable absorber[J]. Chinese Journal of Lasers, 46, 0808002(2019).

    [69] Liu H Y, Chang J H, Feng X X et al. Research on double passively Q-switched laser based on graphene quantum dots and molybdenum disulfide[J]. Chinese Journal of Lasers, 47, 1101001(2020).

    [70] Zhang Y J, Liu J, Cai Y W et al. Research on vibration performance of all-polarization-maintaining erbium-doped mode-locked fiber laser based on carbon nanotube[J]. Chinese Journal of Lasers, 47, 0901003(2020).

    [71] Hu Y T, Chu H W, Li D Z et al. Enhanced Q-switching performance of magnetite nanoparticle via compositional engineering with Ti3C2 MXene in the near infrared region[J]. Journal of Materials Science & Technology, 81, 51-57(2021).

    [72] Zhang T, Chu H W, Dong L et al. Synthesis and optical nonlinearity investigation of novel Fe3O4@Ti3C2 MXene hybrid nanomaterials from 1 to 2 μm[J]. Journal of Materials Chemistry C, 9, 1772-1777(2021). http://pubs.rsc.org/en/content/articlelanding/2020/tc/d0tc04943c/unauth

    [73] Pan H, Chu H W, Pan Z B et al. Large-scale monolayer molybdenum disulfide (MoS2) for mid-infrared photonics[J]. Nanophotonics, 9, 4703-4710(2020). http://www.degruyter.com/view/journals/nanoph/ahead-of-print/article-10.1515-nanoph-2020-0331/article-10.1515-nanoph-2020-0331.xml?rskey=0U5KGY&result=5

    [74] Zhang J, Jiang T, Zhou T et al. Saturated absorption of different layered Bi2Se3 films in the resonance zone[J]. Photonics Research, 6, C8-C14(2018). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=GZXJ201810003

    [75] Jiang T, Yin K, Wang C et al. Ultrafast fiber lasers mode-locked by two-dimensional materials:review and prospect[J]. Photonics Research, 8, 78-90(2020).

    [76] Zhang C X, Ouyang H, Miao R L et al. Anisotropic nonlinear absorption: anisotropic nonlinear optical properties of a SnSe flake and a novel perspective for the application of all-optical switching[J]. Advanced Optical Materials, 7, 1970068(2019). http://onlinelibrary.wiley.com/doi/10.1002/adom.201970068

    [77] Bai R X, Yang J H, Wei D H et al. Research progress of low-dimensional semiconductor materials in field of nonlinear optics[J]. Acta Physica Sinica, 69, 184211(2020).

    [78] Liu J J, Huang H, Zhang F et al. Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser[J]. Photonics Research, 6, 762-767(2018).

    [79] Du L, Lu D L, Li J et al. Broadband nonlinear optical response of single-crystalline bismuth thin film[J]. ACS Applied Materials & Interfaces, 11, 35863-35870(2019). http://www.ncbi.nlm.nih.gov/pubmed/31430114

    [80] Su X C, Wang Y R, Zhang B T et al. Bismuth quantum dots as an optical saturable absorber for a 1.3 μm Q-switched solid-state laser[J]. Applied Optics, 58, 1621-1625(2019).

    [81] Feng X Y, Lin Y K, Yu X R et al. Continuous-wave and Q-switched Nd∶BGSO lasers based on bismuth nanosheets absorber[J]. Applied Optics, 58, 6545-6548(2019).

    Hongwei Chu, Dechun Li. Recent Progress on Fabrication, Characterization and Nonlinear Optical Properties of Bismuth-Based Nanomaterials[J]. Chinese Journal of Lasers, 2021, 48(12): 1208002
    Download Citation