• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1208002 (2021)
Hongwei Chu and Dechun Li*
Author Affiliations
  • School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • show less
    DOI: 10.3788/CJL202148.1208002 Cite this Article Set citation alerts
    Hongwei Chu, Dechun Li. Recent Progress on Fabrication, Characterization and Nonlinear Optical Properties of Bismuth-Based Nanomaterials[J]. Chinese Journal of Lasers, 2021, 48(12): 1208002 Copy Citation Text show less
    Stable structures of two-dimensional VAene[24]. (a) Schematic structures of α and β phases; (b) phonon spectra of α and β phases
    Fig. 1. Stable structures of two-dimensional VAene[24]. (a) Schematic structures of α and β phases; (b) phonon spectra of α and β phases
    Stability and band structures of tetragonal system bismuthene [26]. (a) and (b) Schematic of tetragonal system structures; (c) molecular dynamics; (d) band structures caculated by PBE, PBE+SOC, HSE and HSE+SOC
    Fig. 2. Stability and band structures of tetragonal system bismuthene [26]. (a) and (b) Schematic of tetragonal system structures; (c) molecular dynamics; (d) band structures caculated by PBE, PBE+SOC, HSE and HSE+SOC
    Point substituted defect structure monolayer bismuthene[30]. (a) Density of states; (b) band structures
    Fig. 3. Point substituted defect structure monolayer bismuthene[30]. (a) Density of states; (b) band structures
    Electrical conductance as a function of the bismuth thin film thickness at 300 K, 100 K and 5 K[34]
    Fig. 4. Electrical conductance as a function of the bismuth thin film thickness at 300 K, 100 K and 5 K[34]
    Bismuthene on SiC(0001)[37]. (a) Sketch model of bismuthene on SiC; (b) STM image of bismuthene; (c) step height distribution map; (d) STM image with high resolution to show the honeycomb structure; (e) bismuthene honeycomb structure of the occupied states and the non-occupied states
    Fig. 5. Bismuthene on SiC(0001)[37]. (a) Sketch model of bismuthene on SiC; (b) STM image of bismuthene; (c) step height distribution map; (d) STM image with high resolution to show the honeycomb structure; (e) bismuthene honeycomb structure of the occupied states and the non-occupied states
    Atomic structure of bismuthene[47]. (a) Top view; (b) side view; (c) schematic illustration of bismuthene preparation; (d) TEM image; (e) HRTEM image; (f) SEM image; (g) AFM image; (h) HRXRD image; (i) absorption spectrum; (j) Raman spectra of the bulk bismuth and the few-layer bismuthene; (k) XPS
    Fig. 6. Atomic structure of bismuthene[47]. (a) Top view; (b) side view; (c) schematic illustration of bismuthene preparation; (d) TEM image; (e) HRTEM image; (f) SEM image; (g) AFM image; (h) HRXRD image; (i) absorption spectrum; (j) Raman spectra of the bulk bismuth and the few-layer bismuthene; (k) XPS
    Sulfuric acid intercalation-assisted liquid exfoliation[59]. (a) Schematic progress; (b) SEM image of bulk bismuth particle; (c) SEM image of sulfuric acid-intercalated bismuth powder; (d) SEM image of bismuthene nanosheets
    Fig. 7. Sulfuric acid intercalation-assisted liquid exfoliation[59]. (a) Schematic progress; (b) SEM image of bulk bismuth particle; (c) SEM image of sulfuric acid-intercalated bismuth powder; (d) SEM image of bismuthene nanosheets
    Few-layered bistmuthene mode-locked lasers[47]. (a) Schematic diagram of bismuthene deposition; (b) microscope image of bismuthene saturable absorber; (c) nonlinear transmittance; (d) spectrum of mode-locking; (e) pulse train; (f) autocorrelation signal; (g) radio frequency spectrum
    Fig. 8. Few-layered bistmuthene mode-locked lasers[47]. (a) Schematic diagram of bismuthene deposition; (b) microscope image of bismuthene saturable absorber; (c) nonlinear transmittance; (d) spectrum of mode-locking; (e) pulse train; (f) autocorrelation signal; (g) radio frequency spectrum
    Bismuthene mode-locking erbium-doped fiber laser[53]. (a) Laser spectrum; (b) pulse train, inset: autocorrelation signal; (c) radio frequency spectrum; (d) output power versus the incident pump power
    Fig. 9. Bismuthene mode-locking erbium-doped fiber laser[53]. (a) Laser spectrum; (b) pulse train, inset: autocorrelation signal; (c) radio frequency spectrum; (d) output power versus the incident pump power
    Bismuthene mode-locked thulium-doped fiber laser[59]. (a) Schematic diagram of laser cavity structure, inset: energy band structure with trap states; (b) pulse train; (c) pulse width, inset: spectrum
    Fig. 10. Bismuthene mode-locked thulium-doped fiber laser[59]. (a) Schematic diagram of laser cavity structure, inset: energy band structure with trap states; (b) pulse train; (c) pulse width, inset: spectrum
    Bismuth thin film mode-locked erbium-doped fiber laser[79]. (a) Pulse train; (b) output mode-locked spectrum; (c) autocorrelation signal; (d) radio frequency spectrum; (e) pulse train from bismuth thin film Q-switched Er∶ZBLAN fiber laser; (f) output Q-switched spectrum
    Fig. 11. Bismuth thin film mode-locked erbium-doped fiber laser[79]. (a) Pulse train; (b) output mode-locked spectrum; (c) autocorrelation signal; (d) radio frequency spectrum; (e) pulse train from bismuth thin film Q-switched Er∶ZBLAN fiber laser; (f) output Q-switched spectrum
    Bismuthene Q-switched laser[80]. (a)--(c) Pulses with different time scales; (d) output spectrum
    Fig. 12. Bismuthene Q-switched laser[80]. (a)--(c) Pulses with different time scales; (d) output spectrum
    Hongwei Chu, Dechun Li. Recent Progress on Fabrication, Characterization and Nonlinear Optical Properties of Bismuth-Based Nanomaterials[J]. Chinese Journal of Lasers, 2021, 48(12): 1208002
    Download Citation