• Laser & Optoelectronics Progress
  • Vol. 59, Issue 2, 0214001 (2022)
Boyu Fan1、*, Zaifeng Shi1、3、**, Zhe Wang1, Shaoxiong Li1, and Tao Luo2
Author Affiliations
  • 1School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
  • 3Tianjin Key Laboratory of Microelectronic Technology for Imaging and Sensing, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP202259.0214001 Cite this Article Set citation alerts
    Boyu Fan, Zaifeng Shi, Zhe Wang, Shaoxiong Li, Tao Luo. A Configurable BP Neural Network Accelerator for Laser Welding Parameter Calculation[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0214001 Copy Citation Text show less
    References

    [1] Wang D C. Controlling laser surface strengthening process based on artificial neural network[J]. Laser Technology, 27, 317-320(2003).

    [2] Guo L, Wang S H, Zhang Q M et al. Optimization of fiber laser welding process viarables and performance prediction based on BP neural network[J]. Applied Laser, 30, 479-482(2010).

    [3] Bandoh S, Nakayama Y, Asagumo R et al. Establishment of database of carbon/epoxy material properties and design values on durability and environmental resistance[J]. Advanced Composite Materials, 11, 365-374(2002).

    [4] Venieris S I, Bouganis C S. fpgaConvNet: a framework for mapping convolutional neural networks on FPGAs[C], 40-47(2016).

    [5] Mittal S. A survey of FPGA-based accelerators for convolutional neural networks[J]. Neural Computing and Applications, 32, 1109-1139(2020).

    [6] Zhao Y Q, Zhang X, Fang X et al. A deep residual networks accelerator on FPGA[C], 13-17(2019).

    [7] Ma Y F, Suda N, Cao Y et al. Scalable and modularized RTL compilation of convolutional neural networks onto FPGA[C], 1-8(2016).

    [8] Sharma H, Park J, Mahajan D et al. From high-level deep neural models to FPGAs[C], 1-12(2016).

    [9] Pan L J, Chen W F, Cui R F et al. Quantitative analysis of aluminum alloy based on laser-induced breakdown spectroscopy and radial basis function neural network[J]. Laser & Optoelectronics Progress, 57, 193002(2020).

    [10] Franceschetti L, Pacher M, Tanelli M et al. Dross attachment estimation in the laser-cutting process via Convolutional Neural Networks (CNN)[C], 850-855(2020).

    [11] Elwarfalli H, Papazoglou D, Erdahl D et al. In situ process monitoring for laser-powder bed fusion using convolutional neural networks and infrared tomography[C], 323-327(2019).

    [12] Xue L, Zhu Z K, Wu W T et al. Simulated analysis of processing satellite laser ranging data using neural networks trained by DeepLabCut[C], 468-472(2019).

    [13] Hu J, Liu Y D, Sun X D et al. Quantitative determination of benzoic acid in flour based on terahertz time-domain spectroscopy and BPNN model[J]. Laser & Optoelectronics Progress, 57, 073002(2020).

    [14] Cacivkins P, Lazov L, Teirumnieks E et al. Artificial neural networks: what can they learn about color laser marking?[C], 1-4(2018).

    [15] de Figueiredo R M, Veronez M R, Tognoli F M W et al. Laser scanner intensity calibration based on artificial neural networks[C], 1716-1719(2017).

    [16] Hu Y, Li Z H, Lü T. Quantitative measurement of iron content in geological standard samples by laser-induced breakdown spectroscopy combined with artificial neural network[J]. Laser & Optoelectronics Progress, 54, 053003(2017).

    [17] Shi Z F, Ye P, Sun C et al. Object detection algorithm applied to optical genetic laser projection system[J]. Laser & Optoelectronics Progress, 57, 061503(2020).

    [18] Zhou D W, Qiao X J, Zhang L J et al. Parameters optimization of laser welding process of galvanized steel and 6016 aluminum alloy based on BP neural network and its microstructure and mechanical properties[J]. The Chinese Journal of Nonferrous Metals, 24, 678-688(2014).

    [19] Nicolosi L, Tetzlaff R, Abt F et al. Cellular Neural Network (CNN) based control algorithms for omnidirectional laser welding processes: experimental results[C], 1-6(2010).

    [20] Guo D X, Chen J M, Cheng Y H. Laser cutting parameters optimization based on artificial neural network[C], 1106-1111(2006).

    [21] Sze V, Chen Y H, Yang T J et al. Efficient processing of deep neural networks: a tutorial and survey[J]. Proceedings of the IEEE, 105, 2295-2329(2017).

    Boyu Fan, Zaifeng Shi, Zhe Wang, Shaoxiong Li, Tao Luo. A Configurable BP Neural Network Accelerator for Laser Welding Parameter Calculation[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0214001
    Download Citation