• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011021 (2021)
Wei Huang1, Shuming Jiao2、*, and Changyan Xiao1、**
Author Affiliations
  • 1College of Electrical and Information Engineering, Hunan University, Changsha, Hunan 410082, China
  • 2Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China
  • show less
    DOI: 10.3788/LOP202158.1011021 Cite this Article Set citation alerts
    Wei Huang, Shuming Jiao, Changyan Xiao. Image Processing Algorithms Related to Single-Pixel Imaging: A Review[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011021 Copy Citation Text show less
    References

    [1] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429(1995).

    [2] Bennink R S, Bentley S J, Boyd R W et al. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [3] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004).

    [4] Cao D Z, Xiong J, Wang K G et al. Geometrical optics in correlated imaging systems[J]. Physical Review A, 71, 013801(2005).

    [5] Scarcelli G, Berardi V, Shih Y et al. Phase-conjugate mirror via two-photon thermal light imaging[J]. Applied Physics Letters, 88, 061106(2006).

    [6] Basano L, Ottonello P. Experiment in lensless ghost imaging with thermal light[J]. Applied Physics Letters, 89, 091109(2006).

    [7] Zhang D, Zhai Y H, Wu L G et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005).

    [8] Zhai Y H, Chen X H, Zhang D et al. Two-photon interference with true thermal light[J]. Physical Review A, 72, 043805(2005).

    [9] Chen X H, Liu Q, Luo K H et al. Lensless ghost imaging with true thermal light[J]. Optics Letters, 34, 695-697(2009).

    [10] Meyers R, Deacon K S, Shih Y et al. Ghost-imaging experiment by measuring reflected photons[J]. Physical Review A, 77, 041801(2008).

    [11] Valencia A, Scarcelli G, D'Angelo M et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [12] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [13] Erkmen B I, Shapiro J H. Ghost imaging: from quantum to classical to computational[J]. Advances in Optics and Photonics, 2, 405-450(2010).

    [14] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [15] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [16] Edgar M P, Gibson G M, Padgett M J et al. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [17] Balaguer E S, Carmona P L, Chabert C et al. Low-cost single-pixel 3D imaging by using an LED array[J]. Optics Express, 26, 15623-15631(2018).

    [18] Zhang Z, Ma X, Zhong J et al. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).

    [19] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [20] Yan H Y, Zhao C Q, Xu W D et al. Terahertz ghost imaging based on imaging-transformation measurement matrices[J]. Chinese Journal of Lasers, 46, 1214001(2019).

    [21] Yan Y Q, Zhao C Q, Xu W D et al. Research on the terahertz active ghost imaging technology[J]. Chinese Journal of Lasers, 45, 0814001(2018).

    [22] Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 29, 782-789(2012).

    [23] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).

    [24] Zhang Z B, Liu S J, Peng J Z et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 5, 315-319(2018).

    [25] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review[J]. Sensors, 19, 732(2019).

    [26] Radwell N, Mitchell K J, Gibson G M et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014).

    [27] Aspden R S, Gemmell N R, Morris P A et al. Photon-sparse microscopy: visible light imaging using infrared illumination[J]. Optica, 2, 1049-1052(2015).

    [28] Tajahuerce E, Durán V, Clemente P et al. Image transmission through dynamic scattering media by single-pixel photodetection[J]. Optics Express, 22, 16945-16955(2014).

    [29] Bian L H, Suo J L, Situ G H et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 6, 24752(2016).

    [30] Pelliccia D, Rack A, Scheel M et al. Erratum: experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 219902(2016).

    [31] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).

    [32] Gong W, Zhao C, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).

    [33] Wang J R, Shan Z Y, Zhang Y et al. Methodology analysis on stochastic radiation field of radar correlated imaging[J]. Acta Optica Sinica, 37, 0811004(2017).

    [34] Gibson G M, Sun B Q, Edgar M P et al. Real-time imaging of methane gas leaks using a single-pixel camera[J]. Optics Express, 25, 2998-3005(2017).

    [35] Candès E J, Romberg J K, Tao T et al. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 59, 1207-1223(2006).

    [36] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [37] Wakin M B, Laska J N, Duarte M F et al. An architecture for compressive imaging[C]. //2006 International Conference on Image Processing, October 8-11, 2006, Atlanta, GA, USA., 1273-1276(2006).

    [38] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 52, 5406-5425(2006).

    [39] Katz O, Bromberg Y, Silberberg Y et al. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [40] Lu M H, Shen X, Han S S et al. Ghost imaging via compressive sampling based on digital micromirror device[J]. Acta Optica Sinica, 31, 0711002(2011).

    [41] Zhang Z B, Wang X Y, Zheng G A et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 7, 12029(2017).

    [42] Clemente P, Durán V, Tajahuerce E et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 38, 2524-2527(2013).

    [43] Liu B L, Yang Z H, Liu X et al. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform[J]. Journal of Modern Optics, 64, 259-264(2017).

    [44] Mallat S. An approximation tour[M]. //Mallat S. A wavelet tour of signal processing, 376-433(1999).

    [45] Alemohammad M, Stroud J R, Bosworth B T et al. High-speed all-optical Haar wavelet transform for real-time image compression[J]. Optics Express, 25, 9802-9811(2017).

    [46] Carmona P L, Traver V J, Sánchez J S et al. Online reconstruction-free single-pixel image classification[J]. Image and Vision Computing, 86, 28-37(2019).

    [47] Kulkarni K, Turaga P. Reconstruction-free action inference from compressive imagers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 772-784(2016).

    [48] Davenport M A, Duarte M F, Wakin M B et al. The smashed filter for compressive classification and target recognition[J]. Proceedings of the SPIE, 6498, 64980H(2007).

    [49] Calderbank R, Jafarpour S, Schapire R et al. Compressed learning: universal sparse dimensionality reduction and learning in the measurement domain[EB/OL]. [2021-01-28]. https://www.ixueshu.com/document/3226e8de8574caab318947a18e7f9386.html

    [50] Li C, Cheng Y, Bi S et al. Learning object recognition based on compressive sampling[C]. //2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), December 5-8, 2017, Parisian., 2663-2668(2017).

    [51] Lohit S, Kulkarni K, Turaga P et al. Reconstruction-free inference on compressive measurements[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 7-12, 2015, Boston, MA, USA., 16-24(2015).

    [52] Chen H C, Shi J H, Liu X L et al. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition[J]. Optics Communications, 413, 269-275(2018).

    [53] Li Z P, Lei M, Liu Q et al. Lensless compressive sensing with annulus-sector-shaped pixel geometry in the photon-starved environment[J]. Optics and Lasers in Engineering, 134, 106232(2020).

    [54] Zhu Y, Shi J H, Wu X Y et al. Photon-limited non-imaging object detection and classification based on single-pixel imaging system[J]. Applied Physics B, 126, 1-8(2020).

    [55] He X, Zhao S, Wang L et al. Ghost handwritten digit recognition based on deep learning[EB/OL]. (2020-04-28)[2021-01-28]. https://arxiv.org/abs/2004.02068

    [56] Jiao S M, Feng J, Gao Y et al. Optical machine learning with incoherent light and a single-pixel detector[J]. Optics Letters, 44, 5186-5189(2019).

    [57] Limbacher B, Schoenhuber S, Wenclawiak M et al. Terahertz optical machine learning for object recognition[J]. APL Photonics, 5, 126103(2020).

    [58] Bu T, Kumar S, Zhang H et al. Single-pixel pattern recognition with coherent nonlinear optics[J]. Optics Letters, 45, 6771-6774(2020).

    [59] Lohit S, Kulkarni K, Turaga P et al. Direct inference on compressive measurements using convolutional neural networks[C]. //2016 IEEE International Conference on Image Processing (ICIP), September 25-28, 2016, Phoenix, AZ, USA., 1913-1917(2016).

    [60] Adler A, Elad M, Zibulevsky M et al. Compressed learning: a deep neural network approach[EB/OL]. (2016-10-30)[2021-1-28]. https://arxiv.org/abs/1610.09615

    [61] Zhang Z B, Li X, Zheng S J et al. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection[J]. Optics Express, 28, 13269-13278(2020).

    [62] Fu H, Bian L H, Zhang J et al. Single-pixel sensing with optimal binarized modulation[J]. Optics Letters, 45, 3111-3114(2020).

    [63] Jiao S M, Sun M J, Gao Y et al. Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[J]. Optics Express, 27, 12841-12854(2019).

    [64] Sun S, Lin H Z, Xu Y K et al. Tracking and imaging of moving objects with temporal intensity difference correlation[J]. Optics Express, 27, 27851-27861(2019).

    [65] Zhang C, Gong W L, Han S S et al. Improving imaging resolution of shaking targets by Fourier-transform ghost diffraction[J]. Applied Physics Letters, 102, 021111(2013).

    [66] Li E R, Bo Z W, Chen M L et al. Ghost imaging of a moving target with an unknown constant speed[J]. Applied Physics Letters, 104, 251120(2014).

    [67] Zhang C, Gong W L, Han S S et al. Ghost imaging for moving targets and its application in remote sensing[J]. Chinese Journal of Lasers, 39, 1214003(2012).

    [68] Li X H, Deng C J, Chen M L et al. Ghost imaging for an axially moving target with an unknown constant speed[J]. Photonics Research, 3, 153-157(2015).

    [69] Jiang W J, Li X Y, Peng X L et al. Imaging high-speed moving targets with a single-pixel detector[J]. Optics Express, 28, 7889-7897(2020).

    [70] Sun S, Gu J H, Lin H Z et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 44, 5594-5597(2019).

    [71] Yang D Y, Chang C, Wu G H et al. Compressive ghost imaging of the moving object using the low-order moments[J]. Applied Sciences, 10, 7941(2020).

    [72] Huang X W, Nan S Q, Tan W et al. Ghost imaging for detecting trembling with random temporal changing[J]. Optics Letters, 45, 1354-1357(2020).

    [73] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).

    [74] Wu H, Wang R Z, Zhao G P et al. Sub-Nyquist computational ghost imaging with deep learning[J]. Optics Express, 28, 3846-3853(2020).

    [75] Wu H, Wang R Z, Zhao G P et al. Deep-learning denoising computational ghost imaging[J]. Optics and Lasers in Engineering, 134, 106183(2020).

    [76] Jiao S M, Gao Y, Feng J et al. Does deep learning always outperform simple linear regression in optical imaging?[J]. Optics Express, 28, 3717-3731(2020).

    [77] Clemente P, Durán V, Company V T et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010).

    [78] Tanha M, Kheradmand R, Kandjani S A et al. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 101, 101108(2012).

    [79] Pan Z L, Zhang L H. Optical cryptography-based temporal ghost imaging with chaotic laser[J]. IEEE Photonics Technology Letters, 29, 1289-1292(2017).

    [80] Jiao S M, Lei T, Gao Y et al. Known-plaintext attack and ciphertext-only attack for encrypted single-pixel imaging[J]. IEEE Access, 7, 119557-119565(2019).

    [81] Yuan S, Wang L J, Liu X M et al. Forgery attack on optical encryption based on computational ghost imaging[J]. Optics Letters, 45, 3917-3920(2020).

    [82] Chen W, Chen X D. Ghost imaging using labyrinth-like phase modulation patterns for high-efficiency and high-security optical encryption[J]. Europhysics Letters, 109, 14001(2015).

    [83] Sui L S, Du C, Xu M J et al. Information encryption based on the customized data container under the framework of computational ghost imaging[J]. Optics Express, 27, 16493-16506(2019).

    [84] Kong L J, Li Y N, Qian S X et al. Encryption of ghost imaging[J]. Physical Review A, 88, 013852(2013).

    [85] Cao F, Zhao S M. Optical encryption scheme with double secret keys based on computational ghost imaging[J]. Acta Optica Sinica, 37, 0111001(2017).

    [86] Chen W, Chen X D. Ghost imaging for three-dimensional optical security[J]. Applied Physics Letters, 103, 221106(2013).

    [87] Yuan S, Yao J B, Liu X M et al. Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging[J]. Optics Communications, 365, 180-185(2016).

    [88] Zhao S M, Wang L, Liang W Q et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique[J]. Optics Communications, 353, 90-95(2015).

    [89] Qin Y, Zhang Y Y. Information encryption in ghost imaging with customized data container and XOR operation[J]. IEEE Photonics Journal, 9, 1-8(2017).

    [90] Kang Y, Zhang L H, Ye H L et al. One-to-many optical information encryption transmission method based on temporal ghost imaging and code division multiple access[J]. Photonics Research, 7, 1370-1380(2019).

    [91] Chen W, Chen X D. Marked ghost imaging[J]. Applied Physics Letters, 104, 251109(2014).

    [92] Wang L, Zhao S M, Cheng W W et al. Optical image hiding based on computational ghost imaging[J]. Optics Communications, 366, 314-320(2016).

    [93] Chen W. Ghost identification based on single-pixel imaging in big data environment[J]. Optics Express, 25, 16509-16516(2017).

    [94] Zhang C, He W, Han B et al. Compressive optical steganography via single-pixel imaging[J]. Optics Express, 27, 13469-13478(2019).

    [95] Jiao S M, Feng J, Gao Y et al. Visual cryptography in single-pixel imaging[J]. Optics Express, 28, 7301-7313(2020).

    [96] Kmieć M, Glowacz A. Object detection in security applications using dominant edge directions[J]. Pattern Recognition Letters, 52, 72-79(2015).

    [97] Li X F, Zhang S Q, Pan X et al. Straight road edge detection from high-resolution remote sensing images based on the Ridgelet transform with the revised parallel-beam Radon transform[J]. International Journal of Remote Sensing, 31, 5041-5059(2010).

    [98] Liu X F, Yao X R, Lan R M et al. Edge detection based on gradient ghost imaging[J]. Optics Express, 23, 33802-33811(2015).

    [99] Wang Y, Liu Y, Suo J et al. High speed computational ghost imaging via spatial sweeping[J]. Scientific Reports, 7, 45325(2017).

    [100] Mao T Y, Chen Q, He W J et al. Speckle-shifting ghost imaging[J]. IEEE Photonics Journal, 8, 1-10(2016).

    [101] Yuan S, Xiang D, Liu X M et al. Edge detection based on computational ghost imaging with structured illuminations[J]. Optics Communications, 410, 350-355(2018).

    [102] Chen Y, Li X X, Cheng Z D et al. Multidirectional edge detection based on gradient ghost imaging[J]. Optik, 207, 163768(2020).

    [103] Tao Y, Wang X X, Yang F B et al. Edge detection based on high-pass filter ghost imaging[J]. Laser & Optoelectronics Progress, 57, 021101(2020).

    [104] Ren H D, Zhao S M, Gruska J et al. Edge detection based on single-pixel imaging[J]. Optics Express, 26, 5501-5511(2018).

    [105] Yamazaki Y, Nomura T. Computational ghost imaging with designed low spatial frequency masks[J]. Applied Optics, 57, 9375-9380(2018).

    [106] Wang K, Li Q, Lin H Z et al. Ghost imaging with spatial light modulator based on genetic algorithm[J]. Acta Optica Sinica, 36, 0227002(2016).

    [107] Yan G Q, Yang F B, Wang X X et al. Computational ghost imaging based on orthogonal sinusoidal speckle[J]. Laser & Optoelectronics Progress, 57, 041019(2020).

    [108] Cai H J, Yao Z H, Gao C et al. Reflection ghost imaging based on superimposed speckle-pattern[J]. Laser & Optoelectronics Progress, 56, 071101(2019).

    [109] Hu C Y, Tong Z S, Liu Z T et al. Optimization of light fields in ghost imaging using dictionary learning[J]. Optics Express, 27, 28734-28749(2019).

    [110] Feng J, Jiao S M, Gao Y et al. Design of optimal illumination patterns in single-pixel imaging using image dictionaries[J]. IEEE Photonics Journal, 12, 1-9(2020).

    [111] Vaz P G, Amaral D, Ferreira L F R et al. Image quality of compressive single-pixel imaging using different Hadamard orderings[J]. Optics Express, 28, 11666-11681(2020).

    [112] Bian L H, Suo J L, Hu X M et al. Efficient single pixel imaging in Fourier space[J]. Journal of Optics, 18, 085704(2016).

    [113] Yu X, Yang F, Gao B et al. Deep compressive single pixel imaging by reordering Hadamard basis: a comparative study[J]. IEEE Access, 8, 55773-55784(2020).

    [114] Yu X, Stantchev R I, Yang F et al. Super sub-Nyquist single-pixel imaging by total variation ascending ordering of the Hadamard basis[J]. Scientific Reports, 10, 9338(2020).

    [115] Yuan A Y, Feng J, Jiao S M et al. Adaptive and dynamic ordering of illumination patterns with an image dictionary in single-pixel imaging[J]. Optics Communications, 481, 126527(2021).

    [116] Chen Y, Fan X, Cheng Y B et al. Compressive sensing ghost imaging based on neighbor similarity[J]. Acta Optica Sinica, 38, 0711001(2018).

    [117] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).

    [118] Shimobaba T, Endo Y, Nishitsuji T et al. Computational ghost imaging using deep learning[J]. Optics Communications, 413, 147-151(2018).

    [119] Zhai X, Cheng Z D, Liang Z Y et al. Computational ghost imaging via adaptive deep dictionary learning[J]. Applied Optics, 58, 8471-8478(2019).

    [120] He Y C, Wang G, Dong G X et al. Ghost imaging based on deep learning[J]. Scientific Reports, 8, 6469(2018).

    [121] Rizvi S, Cao J, Zhang K Y et al. Improving imaging quality of real-time Fourier single-pixel imaging via deep learning[J]. Sensors, 19, 4190(2019).

    [122] Rizvi S, Cao J, Zhang K Y et al. Deringing and denoising in extremely under-sampled Fourier single pixel imaging[J]. Optics Express, 28, 7360-7374(2020).

    Wei Huang, Shuming Jiao, Changyan Xiao. Image Processing Algorithms Related to Single-Pixel Imaging: A Review[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011021
    Download Citation