• Acta Optica Sinica
  • Vol. 38, Issue 3, 328020 (2018)
Ye Weilin1、*, Meng Yongxian1, Zhou Bo1, Yu Hongzhi1, He Xun1, Wu Fupei1, Zheng Zhidan1, and Zheng Chuantao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201838.0328020 Cite this Article Set citation alerts
    Ye Weilin, Meng Yongxian, Zhou Bo, Yu Hongzhi, He Xun, Wu Fupei, Zheng Zhidan, Zheng Chuantao. High-Accuracy Mid-Infrared Atmospheric Ethane Sensing System[J]. Acta Optica Sinica, 2018, 38(3): 328020 Copy Citation Text show less
    References

    [1] Etiope G, Ciccioli P. Earth′s degassing: A missing ethane and propane source[J]. Science, 2009, 323(5913): 478.

    [2] Simpson I J, Andersen M P S, Meinardi S, et al. Long-term decline of global atmospheric ethane concentrations and implications for methane[J]. Nature, 2012, 488(7412): 490-494.

    [3] Nicewonger M R, Verhulst K R, Aydin M, et al. Preindustrial atmospheric ethane levels inferred from polar ice cores: A constraint on the geologic sources of atmospheric ethane and methane[J]. Geophysical Research Letters, 2016, 43(1): 214-221.

    [4] Tassi F, Venturi S, Cabassi J, et al. Volatile organic compounds (VOCs) in soil gases from solfatara crater (Campi Flegrei, southern Italy): Geogenic source(s) vs. biogeochemical processes[J]. Applied Geochemistry, 2015, 56: 37-49.

    [5] Li C, Zheng C, Dong L, et al. Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser[J]. Applied Physics B, 2016, 122(7): 185.

    [6] Reed Z D, Hodges J T. Self- and air-broadened cross sections of ethane (C2H6) determined by frequency-stabilized cavity ring-down spectroscopy near 1.68 μm[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 159: 87-93.

    [7] Tzompa-Sosa Z A, Mahieu E, Franco B, et al. Revisiting global fossil fuel and biofuel emissions of ethane[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(4): 2493-2512.

    [8] Gao Y W, Zhang Y J, Chen D, et al. Measurement of oxygen concentration using tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2016, 36(3): 0330001.

    [9] Cui X J, Dong F Z, Zhang Z R, et al. Studies on improving measurement sensitivity of HONO based on second harmonic wavelength modulation technology[J]. Acta Optica Sinica, 2015, 35(6): 0630006.

    [10] Zheng C, Ye W, Sanchez N P, et al. Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy[J]. Sensors and Actuators B, 2017, 244: 365-372.

    [11] Wang Y, Zhang R. Photo detector characteristics effect on TDLAS gas detection[J]. Acta Optica Sinica, 2016, 36(2): 0230002.

    [12] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 130: 4-50.

    [13] Mei L, Svanberg S. Wavelength modulation spectroscopy-digital detection of gas absorption harmonics based on Fourier analysis[J]. Applied Optics, 2015, 54(9): 2234-2243.

    Ye Weilin, Meng Yongxian, Zhou Bo, Yu Hongzhi, He Xun, Wu Fupei, Zheng Zhidan, Zheng Chuantao. High-Accuracy Mid-Infrared Atmospheric Ethane Sensing System[J]. Acta Optica Sinica, 2018, 38(3): 328020
    Download Citation