[1] Gradl P R, Protz C S, Ellis D L et al. Progress in additively manufactured copper-alloy GRCop-84, GRCop-42, and bimetallic combustion chambers for liquid rocket engines[C](2019).
[2] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).
[3] Kwon B, Maniscalco N I, Jacobi A M et al. High power density air-cooled microchannel heat exchanger[J]. International Journal of Heat and Mass Transfer, 118, 1276-1283(2018).
[4] Hong M S, Park I J, Kim J G. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube[J]. Metals and Materials International, 23, 708-714(2017).
[5] Seltzman A H, Wukitch S J. Surface roughness and finishing techniques in selective laser melted GRCop-84 copper for an additive manufactured lower hybrid current drive launcher[J]. Fusion Engineering and Design, 160, 111801(2020).
[6] Correia J B, Davies H A, Sellars C M. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys[J]. Acta Materialia, 45, 177-190(1997).
[7] Wang Q S, Lou H F, Ma K D[M]. Development and application of copper and copper alloys(2013).
[8] Meng A, Nie J F, Wei K et al. Optimization of strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by cold rolling and aging treatment[J]. Vacuum, 167, 329-335(2019).
[9] Baitimerov R, Lykov P, Zherebtsov D et al. Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting[J]. Materials, 11, 742(2018).
[10] Qiu C L, Adkins N J E, Attallah M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 578, 230-239(2013).
[11] Liu S W, Zhu H H, Peng G Y et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 142, 319-328(2018).
[12] Qin Y L, Sun B H, Zhang H et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field[J]. Chinese Journal of Lasers, 48, 1402002(2021).
[13] Waqar S, Guo K, Sun J. FEM analysis of thermal and residual stress profile in selective laser melting of 316L stainless steel[J]. Journal of Manufacturing Processes, 66, 81-100(2021).
[14] Wang M S, Liu E W, du Y L et al. Cracking mechanism and a novel strategy to eliminate cracks in TiAl alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 204, 114151(2021).
[15] Mao Y Z, Yang J X, Xu W J. Laser surface texturing process and its mechanism for brass material[J]. Chinese Journal of Lasers, 48, 1002111(2021).
[16] de Leon Nope G V, Perez-Andrade L I, Corona-Castuera J et al. Study of volumetric energy density limitations on the IN718 mesostructure and microstructure in laser powder bed fusion process[J]. Journal of Manufacturing Processes, 64, 1261-1272(2021).
[17] Murkute P, Pasebani S, Isgor O B. Production of corrosion-resistant 316L stainless steel clads on carbon steel using powder bed fusion-selective laser melting[J]. Journal of Materials Processing Technology, 273, 116243(2019).
[18] Karimi J, Suryanarayana C, Okulov I et al. Selective laser melting of Ti6Al4V: effect of laser re-melting[J]. Materials Science and Engineering: A, 805, 140558(2021).
[19] Hou W, Chen J, Chu S L et al. Anisotropy of microstructure and tensile properties of AlSi10Mg formed by selective laser melting[J]. Chinese Journal of Lasers, 45, 0702003(2018).
[20] Zhang W Q, Zhu H H, Hu Z H et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 53, 918-926(2017).
[21] Hu Z H, Nie X J, Qi Y et al. Cracking criterion for high strength Al-Cu alloys fabricated by selective laser melting[J]. Additive Manufacturing, 37, 101709(2021).
[22] Gustmann T, Santos J M, Gargarella P et al. Properties of Cu-based shape-memory alloys prepared by selective laser melting[J]. Shape Memory and Superelasticity, 3, 24-36(2017).
[23] Ventura A P, Wade C A, Pawlikowski G et al. Mechanical properties and microstructural characterization of Cu-4.3 pct Sn fabricated by selective laser melting[J]. Metallurgical and Materials Transactions A, 48, 178-187(2017).
[24] Liu Z H, Zhang D Q, Sing S L et al. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy[J]. Materials Characterization, 94, 116-125(2014).
[25] Sing S L, Lam L P, Zhang D Q et al. Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy[J]. Materials Characterization, 107, 220-227(2015).
[26] Ma Z B, Zhang K F, Ren Z H et al. Selective laser melting of Cu-Cr-Zr copper alloy: parameter optimization, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 828, 154350(2020).
[27] Wallis C, Buchmayr B. Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion[J]. Materials Science and Engineering: A, 744, 215-223(2019).
[28] Zuo W, Song M H, Yang H Q et al. Application of additive manufacturing technology in liquid rocket engine[J]. Journal of Rocket Propulsion, 44, 55-65(2018).
[29] Dobatkin S V, Gubicza J, Shangina D V et al. High strength and good electrical conductivity in Cu-Cr alloys processed by severe plastic deformation[J]. Materials Letters, 153, 5-9(2015).
[30] Gu R N, Sing W K, Yan M. Laser additive manufacturing of typical highly reflective materials: gold, silver and copper[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 50, 44-57(2020).
[31] Aboulkhair N T, Everitt N M, Ashcroft I et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 1/2/3/4, 77-86(2014).
[32] Nie X J, Zhang H, Zhu H H et al. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples[J]. Journal of Materials Processing Technology, 256, 69-77(2018).
[33] Karlsson D, Marshal A, Johansson F et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy-a comparison between selective laser melting and induction melting[J]. Journal of Alloys and Compounds, 784, 195-203(2019).
[34] Thijs L, Kempen K, Kruth J P et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 61, 1809-1819(2013).
[35] Dobatkin S V, Gubicza J, Shangina D V et al. High strength and good electrical conductivity in Cu-Cr alloys processed by severe plastic deformation[J]. Materials Letters, 153, 5-9(2015).
[36] Zhang S J, Li R G, Kang H J et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment[J]. Materials Science and Engineering: A, 680, 108-114(2017).