• Chinese Journal of Lasers
  • Vol. 49, Issue 16, 1602005 (2022)
Shasha Zhang1,3, Baopeng Zhang1, Wenqi Zhang1, Huanqing Yang2..., Wei Zheng2, Yun Wang2, Dongjian Peng2 and Haihong Zhu1,*|Show fewer author(s)
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Xi’an Space Engine Company Limited, Xi’an 710100, Shaanxi, China
  • 3China Helicopter Research and Development Institute, Jingdezhen 333000, Jiangxi, China
  • show less
    DOI: 10.3788/CJL202249.1602005 Cite this Article Set citation alerts
    Shasha Zhang, Baopeng Zhang, Wenqi Zhang, Huanqing Yang, Wei Zheng, Yun Wang, Dongjian Peng, Haihong Zhu. Densification Behavior and Microstructure of High Strength and High Conductivity Copper Alloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2022, 49(16): 1602005 Copy Citation Text show less
    QCr0.8 powder used in experiment. (a) Morphology; (b) particle-size distribution
    Fig. 1. QCr0.8 powder used in experiment. (a) Morphology; (b) particle-size distribution
    Density of SLM QCr0.8 versus scanning speed under different hatching spaces
    Fig. 2. Density of SLM QCr0.8 versus scanning speed under different hatching spaces
    OM images of SLM QCr0.8 samples under different scanning speeds at hatching space of 0.20 mm. (a) 200 mm/s; (b) 400 mm/s; (c) 600 mm/s; (d) 800 mm/s; (e) 1000 mm/s; (f) 1200 mm/s
    Fig. 3. OM images of SLM QCr0.8 samples under different scanning speeds at hatching space of 0.20 mm. (a) 200 mm/s; (b) 400 mm/s; (c) 600 mm/s; (d) 800 mm/s; (e) 1000 mm/s; (f) 1200 mm/s
    Influence of hatching space on relative density under different scanning speeds
    Fig. 4. Influence of hatching space on relative density under different scanning speeds
    Schematics of pore formation under different hatching spaces. (a) Appropriate hatching space; (b) small hatching space;(c) large hatching space
    Fig. 5. Schematics of pore formation under different hatching spaces. (a) Appropriate hatching space; (b) small hatching space;(c) large hatching space
    XRD patterns of QCr0.8 alloy in different states. (a) Whole map; (b) local map
    Fig. 6. XRD patterns of QCr0.8 alloy in different states. (a) Whole map; (b) local map
    Typical microstructures of SLM QCr0.8 sample. (a) XOZ plane; (b) XOY plane
    Fig. 7. Typical microstructures of SLM QCr0.8 sample. (a) XOZ plane; (b) XOY plane
    Microstructure of annealed QCr0.8 alloy after forging. (a) Under low magnification optical microscope; (b) under high magnification optical microscope
    Fig. 8. Microstructure of annealed QCr0.8 alloy after forging. (a) Under low magnification optical microscope; (b) under high magnification optical microscope
    SEM images of SLM QCr0.8 alloy sample. (a)(b) XOY plane; (c)(d) XOZ plane
    Fig. 9. SEM images of SLM QCr0.8 alloy sample. (a)(b) XOY plane; (c)(d) XOZ plane
    FTEM images of SLM QCr0.8 alloy. (a) Bright-field image under low magnification; (b) bright-field image under high magnification; (c) HRTEM image; (d) FFT image
    Fig. 10. FTEM images of SLM QCr0.8 alloy. (a) Bright-field image under low magnification; (b) bright-field image under high magnification; (c) HRTEM image; (d) FFT image
    Stress-strain curves of SLM QCr0.8 alloy sample in horizontal direction and aged sample
    Fig. 11. Stress-strain curves of SLM QCr0.8 alloy sample in horizontal direction and aged sample
    Fracture morphologies of SLM QCr0.8 alloy tensile sample. (a) As-deposited, low magnification; (b) as-deposited, high magnification; (c) aged, low magnification; (d) aged, high magnification
    Fig. 12. Fracture morphologies of SLM QCr0.8 alloy tensile sample. (a) As-deposited, low magnification; (b) as-deposited, high magnification; (c) aged, low magnification; (d) aged, high magnification
    SLM QCr0.8 part with complex inner channels
    Fig. 13. SLM QCr0.8 part with complex inner channels
    ParameterValue
    Laser power (P) /W2000
    Scanning speed (v) /(mm·s-1)200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800
    Hatching space (h) /mm0.16, 0.20, 0.24, 0.28
    Layer thickness (t) /mm0.05
    Table 1. Process parameters of SLM QCr0.8 alloy
    SampleUTS /MPaσ0.2/MPaEL /%Conductivity
    SLM234.7173.926.00.378I
    Aging after SLM468.0377.319.20.983I
    Annealing after forging207.080.242.50.798I
    Table 2. Comparison of tensile property and conductivity between SLM QCr0.8 alloy and annealed QCr0.8 alloy after forging
    Shasha Zhang, Baopeng Zhang, Wenqi Zhang, Huanqing Yang, Wei Zheng, Yun Wang, Dongjian Peng, Haihong Zhu. Densification Behavior and Microstructure of High Strength and High Conductivity Copper Alloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2022, 49(16): 1602005
    Download Citation