• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 4, 040014 (2023)
Fupeng LI1, Longgang PANG1、*, and Xinnian WANG2、**
Author Affiliations
  • 1Key Laboratory of Quark and Lepton Physics (MOE) & Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
  • 2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.040014 Cite this Article
    Fupeng LI, Longgang PANG, Xinnian WANG. Application of machine learning to the study of QCD transition in heavy ion collisions[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040014 Copy Citation Text show less
    References

    [1] Elfner H, Müller B. The exploration of hot and dense nuclear matter: introduction to relativistic heavy-ion physics[EB/OL]. arXiv(2022). https://arxiv.org/abs/2210.12056

    [2] Shuryak E. Strongly coupled quark-gluon plasma in heavy ion collisions[J]. Reviews of Modern Physics, 89, 035001(2017).

    [3] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).

    [4] Bass S A, Bernhard J, Moreland J S. Determination of quark-gluon-plasma parameters from a global Bayesian analysis[J]. Nuclear Physics A, 967, 67-73(2017).

    [5] Everett D, Ke W, Paquet J F et al. (JETSCAPE),Phenomenological constraints on the transport properties of QCD matter with data-driven model averaging[J]. Physical Review Letters, 126, 242301(2021).

    [6] Boehnlein A, Diefenthaler M, Sato N et al. Colloquium: machine learning in nuclear physics[J]. Reviews of Modern Physics, 94, 031003(2022).

    [7] Carleo G, Cirac I, Cranmer K et al. Machine learning and the physical sciences[J]. Reviews of Modern Physics, 91, 045002(2019).

    [8] Feickert M, Nachman B. A living review of machine learning for particle physics[EB/OL]. arXiv(2021). https://arxiv.org/abs/2102.02770

    [9] Das Sarma S, Deng D L, Duan L M. Machine learning meets quantum physics[J]. Physics Today, 72, 48-54(2019).

    [10] Mehta P, Wang C H, Day A G R et al. A high-bias, low-variance introduction to Machine Learning for physicists[J]. Physics Reports, 810, 1-124(2019).

    [11] Albertsson K, Altoe P, Anderson D et al. Machine learning in high energy physics community white paper[J]. Journal of Physics: Conference Series, 1085, 022008(2018).

    [12] Liu J G, Wang L. Differentiate everything: a lesson from deep learning[J]. Physics, 50, 69(2021).

    [13] Bedaque P, Boehnlein A, Cromaz M et al. A.I. for nuclear physics[J]. The European Physical Journal A, 57, 100(2021).

    [14] PANG Longgang, ZHOU Kai, WANG Xinnian. Deep learning for nuclear physics[J]. Nuclear Physics Review, 37, 720-726(2020).

    [15] Boyle P, Bollweg D, Brower R et al. Lattice QCD and the computational frontier[EB/OL]. arXiv(2022). https://arxiv.org/abs/2204.00039

    [16] Monnai A, Schenke B, Shen C. Equation of state at finite densities for QCD matter in nuclear collisions[J]. Physical Review C, 100, 024907(2019).

    [17] Shen C, Qiu Z, Song H C et al. The iEBE-VISHNU code package for relativistic heavy-ion collisions[J]. Computer Physics Communications, 199, 61-85(2016).

    [18] Pang L G, Petersen H, Wang X N. Pseudorapidity distribution and decorrelation of anisotropic flow within the open-computing-language implementation CLVisc hydrodynamics[J]. Physical Review C, 97, 064918(2018).

    [19] Pratt S, Sangaline E, Sorensen P et al. Constraining the equation of state of superhadronic matter from heavy-ion collisions[J]. Physical Review Letters, 114, 202301(2015).

    [20] Bernhard J E, Moreland J S, Bass S A et al. Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium[J]. Physical Review C, 94, 024907(2016).

    [21] Bernhard J E. Bayesian parameter estimation for relativistic heavy-ion collisions[EB/OL]. arXiv(2018). https://arxiv.org/abs/1804.06469

    [22] Bernhard J E, Moreland J S, Bass S A. Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma[J]. Nature Physics, 15, 1113-1117(2019).

    [23] Kuttan M O, Steinheimer J, Zhou K et al. The QCD EoS of dense nuclear matter from Bayesian analysis of heavy ion collision data[EB/OL]. arXiv(2022). https://arxiv.org/abs/2211.11670

    [24] Pang L G, Zhou K, Su N et al. An equation-of-state-meter of quantum chromodynamics transition from deep learning[J]. Nature Communications, 9, 210(2018).

    [25] Schenke B, Tribedy P, Venugopalan R. Fluctuating glasma initial conditions and flow in heavy ion collisions[J]. Physical Review Letters, 108, 252301(2012).

    [26] Du Y L, Zhou K, Steinheimer J et al. Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning[J]. The European Physical Journal C, 80, 516(2020).

    [27] Kvasiuk Y, Zabrodin E, Bravina L et al. Classification of equation of state in relativistic heavy-ion collisions using deep learning[J]. Journal of High Energy Physics, 2020, 133(2020).

    [28] Steinheimer J, Pang L G, Zhou K et al. A machine learning study to identify spinodal clumping in high energy nuclear collisions[J]. Journal of High Energy Physics, 2019, 122(2019).

    [29] Kuttan M O, Zhou K, Steinheimer J et al. An equation-of-state-meter for CBM using PointNet[J]. Journal of High Energy Physics, 2021, 184-184(2021).

    [30] Jiang L J, Wang L X, Zhou K. Deep learning stochastic processes with QCD phase transition[J]. Physical Review D, 103, 116023(2021).

    [31] Bialas A, Peschanski R B. Intermittency in multiparticle production at high energy[J]. Nuclear Physics B, 308, 857-867(1988).

    [32] Satz H. Intermittency and critical behavior[J]. Nuclear Physics B, 326, 613-618(1989).

    [33] Hwa R C. Fractal measures in multiparticle production[J]. Physical Review D, Particles and Fields, 41, 1456-1462(1990).

    [34] Antoniou N G, Contoyiannis Y F, Diakonos F K et al. Pion production from a critical QCD phase[J]. Nuclear Physics A, 693, 799-824(2001).

    [35] Wu J, Lin Y F, Wu Y F et al. Probing QCD critical fluctuations from intermittency analysis in relativistic heavy-ion collisions[J]. Physics Letters B, 801, 135186(2020).

    [36] Anticic T, Baatar B, Bartke J et al. Critical fluctuations of the proton density in A+A collisions at 158A GeV[J]. The European Physical Journal C, 75, 587(2015).

    [37] Davis N, Collaboration N. Searching for the critical point of strongly interacting matter in nucleus-nucleus collisions at CERN SPS[C], 305(2020).

    [38] Davis N, Antoniou N, Diakonos F K et al. Recent results from proton intermittency analysis in nucleus-nucleus collisions from NA61/SHINE at CERN SPS[C], 154(2019).

    [39] Huang Y G, Pang L G, Luo X F et al. Probing criticality with deep learning in relativistic heavy-ion collisions[J]. Physics Letters B, 827, 137001(2022).

    [40] Bazavov A, Bhattacharya T, DeTar C et al. (HotQCD), Equation of state in (2+1)-flavor QCD[J]. Physical Review D, 90, 094503(2014).

    [41] Plumari S, Alberico W M, Greco V et al. Recent thermodynamic results from lattice QCD analyzed within a quasi-particle model[J]. Physical Review D, 84, 094004(2011).

    [42] Li F P, Lyu H, Pang L et al. Deep-learning quasi-particle masses from QCD equation of state[EB/OL]. arXiv(2022). https://arxiv.org/abs/2211.07994

    [43] Mroczek D, Hjorth-Jensen M, Noronha-Hostler J et al. Mapping out the thermodynamic stability of a QCD equation of state with a critical point using active learning[EB/OL]. arXiv(2022). https://arxiv.org/abs/2203.13876

    [44] Parotto P, Bluhm M, Mroczek D et al. QCD equation of state matched to lattice data and exhibiting a critical point singularity[J]. Physical Review C, 101, 034901(2020).

    [45] Liu Z M, Zhao W B, Song H C. Principal component analysis of collective flow in relativistic heavy-ion collisions[J]. The European Physical Journal C, 79, 870(2019).

    [46] Wang R, Ma Y G, Wada R et al. Nuclear liquid-gas phase transition with machine learning[J]. Physical Review Research, 2, 043202(2020).

    [47] Liu J, Gao C, Wan N et al. Basic quantities of the equation of state in isospin asymmetric nuclear matter[J]. Nuclear Science and Techniques, 32, 117(2021).

    [48] Danielewicz P, Lacey R, Lynch W G. Determination of the equation of state of dense matter[J]. Science, 298, 1592-1596(2002).

    [49] Lattimer J, Prakash M. Neutron star observations: prognosis for equation of state constraints[J]. Physics Reports, 442, 109-165(2007).

    [50] LI Fupeng, WANG Yongjia, LI Qingfeng. Using deep learning to study the equation of state of nuclear matter[J]. Nuclear Physics Review, 37, 825-832(2020).

    [51] Liu X Q, Huang M R, Lin W P et al. Symmetry energy extraction from primary fragments in intermediate heavy-ion collisions[J]. Nuclear Science and Techniques, 26, S20508(2015).

    [52] Tsang M B, Zhang Y X, Danielewicz P et al. Constraints on the density dependence of the symmetry energy[J]. Physical Review Letters, 102, 122701(2009).

    [53] Greco V, Baran V, Colonna M et al. Relativistic effects in the search for high density symmetry energy[J]. Physics Letters B, 562, 215-220(2003).

    [54] Wang Y J, Li F P, Li Q F et al. Finding signatures of the nuclear symmetry energy in heavy-ion collisions with deep learning[J]. Physics Letters B, 822, 136669(2021).

    [55] Wang Y J, Gao Z P, Lyu H L et al. Decoding the nuclear symmetry energy event-by-event in heavy-ion collisions with machine learning[J]. Physics Letters B, 835, 137508(2022).

    [56] Ma G L, Zhang S, Ma Y G et al. Di-hadron azimuthal correlation and Mach-like cone structure in a parton/hadron transport model[J]. Physics Letters B, 641, 362-367(2006).

    [57] Neufeld R B. Mach cones in the quark-gluon plasma: viscosity, speed of sound, and effects of finite source structure[J]. Physical Review C, 79, 054909(2009).

    [58] Yang Z, He Y Y, Chen W et al. Deep learning assisted jet tomography for the study of Mach cones in QGP[EB/OL]. arXiv(2022). https://arxiv.org/abs/2206. 02393

    [59] He Y Y, Luo T, Wang X et al. Linear boltzmann transport for jet propagation in the quark-gluon plasma: elastic processes and medium recoil[J]. Physical Review C, 91, 054908(2015).

    [60] Cacciari M. FastJet: a code for fast kt clustering, and more[J]. Ads Abstract Service(2006).

    [61] Zhou K, Endrődi G, Pang L G et al. Regressive and generative neural networks for scalar field theory[J]. Physical Review D, 100, 011501(2019).

    [62] Pawlowski J M, Urban J M. Reducing autocorrelation times in lattice simulations with generative adversarial networks[J]. Machine Learning: Science and Technology, 1, 045011(2020).

    [63] Albergo M S, Kanwar G, Shanahan P E. Flow-based generative models for Markov chain Monte Carlo in lattice field theory[J]. Physical Review D, 100, 034515(2019).

    [64] Wu D, Wang L, Zhang P. Solving statistical mechanics using variational autoregressive networks[J]. Physical Review Letters, 122, 080602(2019).

    [65] Cristoforetti M, Di Renzo F, Eruzzi G et al. An efficient method to compute the residual phase on a Lefschetz thimble[J]. Physical Review D, 89, 114505(2014).

    [66] Cristoforetti A C M, Renzo F, Scorzato L. New approach to the sign problem in quantum field theories: high density QCD on a Lefschetz thimble[J]. Physical Review D, 86, 074506(2012).

    [67] Fujii H, Kamata S, Kikukawa Y. Monte Carlo study of Lefschetz thimble structure in one-dimensional Thirring model at finite density[J]. Journal of High Energy Physics, 2015, 1-17(2015).

    [68] Alexandru A, Bedaque P, Lamm H et al. Deep learning beyond Lefschetz thimbles[J]. Physical Review D, 96, 094505.

    [69] Alexandru A, Bedaque P F, Lamm H et al. Finite-density Monte Carlo calculations on sign-optimized manifolds[J]. Physical Review D, 97, 094510(2018).

    [70] Alexandru A, Bedaque P F, Lamm H et al. Fermions at finite density in 2+1 dimensions with sign-optimized manifolds[J]. Physical Review Letters, 121, 191602(2018).

    [71] Bursa F, Kroyter M. A simple approach towards the sign problem using path optimisation[J]. Journal of High Energy Physics, 2018, 54(2018).

    [72] Ohnishi A, Mori Y, Kashiwa K. Path optimization for the sign problem in field theories using neural network[C], 024011(2019).

    [73] Wynen J L, Berkowitz E, Krieg S et al. Machine learning to alleviate Hubbard model sign problems[J]. Physical Review B, 103, 125153(2021).

    [74] Wan Z Q, Zhang S X, Yao H. Mitigating the fermion sign problem by automatic differentiation[J]. Physical Review B, 106, L241109(2022).

    Fupeng LI, Longgang PANG, Xinnian WANG. Application of machine learning to the study of QCD transition in heavy ion collisions[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040014
    Download Citation