• Laser & Optoelectronics Progress
  • Vol. 58, Issue 24, 2401001 (2021)
Wei Song*, Yuanyuan Chen, Qi He, and Yanling Du**
Author Affiliations
  • College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP202158.2401001 Cite this Article Set citation alerts
    Wei Song, Yuanyuan Chen, Qi He, Yanling Du. Nearshore Wave Period Detection Based on Video Spatiotemporal Feature Learning[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2401001 Copy Citation Text show less
    References

    [1] Seo S, Park S, Koo B. Effect of wave periods on added resistance and motions of a ship in head sea simulations[J]. Ocean Engineering, 137, 309-327(2017).

    [2] Mortlock T R, Goodwin I D, McAneney J K et al. The June 2016 Australian east coast low: importance of wave direction for coastal erosion assessment[J]. Water, 9, 121(2017).

    [3] Group T W. The WAM model: a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 18, 1775-1810(1988).

    [4] Tolman H L, Balasubramaniyan B, Burroughs L D et al. Development and implementation of wind-generated ocean surface wavemodelsat NCEP[J]. Weather and Forecasting, 17, 311-333(2002).

    [5] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions: 1. Model description and validation[J]. Journal of Geophysical Research: Oceans, 104, 7649-7666(1999).

    [6] Benoit M, Marcos F, Becq F. Development of a third generation shallow-water wave model with unstructured spatial meshing[C]. //25th International Conference on Coastal Engineering, September 2-6, 1996, Orlando, Florida, USA, 465-478(1996).

    [7] Helmreich S. Reading a wave buoy[J]. Science, Technology, & Human Values, 44, 737-761(2019).

    [8] Hwang P A, Teague W J, Jacobs G A et al. A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region[J]. Journal of Geophysical Research: Oceans, 103, 10451-10468(1998).

    [9] Wyatt L R, Green J J, Middleditch A et al. Operational wave, current, and wind measurements with the Pisces HF radar[J]. IEEE Journal of Oceanic Engineering, 31, 819-834(2006).

    [10] Shao W Z, Zhang Z, Li X F et al. Ocean wave parameters retrieval from sentinel-1 SAR imagery[J]. Remote Sensing, 8, 707(2016).

    [11] Mumby P J, Green E P, Edwards A J et al. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management[J]. Journal of Environmental Management, 55, 157-166(1999).

    [12] Wang X C, He D X, Liu B X. Research on SAR sea significant wave height inversion method based on ELM model[J]. Chinese Journal of Lasers, 47, 0710002(2020).

    [13] Osorio A F, Medina R, Gonzalez M. An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM[J]. Computers & Geosciences, 46, 196-207(2012).

    [14] Múnera S, Osorio A F, Velásquez J D. Data-based methods and algorithms for the analysis of sandbar behavior with exogenous variables[J]. Computers & Geosciences, 72, 134-146(2014).

    [15] Valentini N, Saponieri A, Damiani L. A new video monitoring system in support of Coastal Zone Management at Apulia Region, Italy[J]. Ocean & Coastal Management, 142, 122-135(2017).

    [16] Pérez Muñoz J C, Ortiz Alarcón C A, Osorio A F et al. Environmental applications of camera images calibrated by means of the Levenberg-Marquardt method[J]. Computers & Geosciences, 51, 74-82(2013).

    [17] Nalamati M, Sharma N, Saqib M et al. Automated monitoring in maritime video surveillance system[C]. //2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), November 25-27, 2020, Wellington, New Zealand., 1-6(2020).

    [18] Jiménez J A, Osorio A, Marino-Tapia I et al. Beach recreation planning using video-derived coastal state indicators[J]. Coastal Engineering, 54, 507-521(2007).

    [19] Li G, Xiong Y Z, Liu K K et al. Water wave detection based on texture characteristics[J]. Application Research of Computers, 30, 1226-1229(2013).

    [20] Piepmeier J A, Waters J. Analysis of stereo vision-based measurements of laboratory water waves[C]. //IGARSS 2004.2004 IEEE International Geoscience and Remote Sensing Symposium, September 20-24, 2004, Anchorage, AK, USA., 3588-3591(2004).

    [21] Shi L, Yang L, Zhu H H et al. Measurements of wave characteristics based on binocular vision and Zero-crossing method[C]. //2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), October 12-14, 2018, Chongqing, China., 613-616(2018).

    [22] Osorio A F, Montoya-Vargas S, Cartagena C A et al. Virtual BUOY:a video-based approach for measuring near-shore wave peak period[J]. Computers & Geosciences, 133, 104302(2019).

    [23] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [24] Tran D, Bourdev L, Fergus R et al. Learning spatiotemporal features with 3D convolutional networks[C]. //2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile., 4489-4497(2015).

    [25] Yang H, Yuan C F, Li B et al. Asymmetric 3D convolutional neural networks for action recognition[J]. Pattern Recognition, 85, 1-12(2019).

    [26] Li J N, Zhang S L, Huang T J. Multi-scale 3D convolution network for video based person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 8618-8625(2019).

    [27] Huang Y K, Guo Y C, Gao C. Efficient parallel inflated 3D convolution architecture for action recognition[J]. IEEE Access, 8, 45753-45765(2020).

    [28] Zhang L, Zhu G M, Shen P Y et al. Learning spatiotemporal features using 3DCNN and convolutional LSTM for gesture recognition[C]. //2017 IEEE International Conference on Computer Vision Workshops (ICCVW), October 22-29, 2017, Venice, Italy., 3120-3128(2017).

    [29] Shi X J, Chen Z R, Wang H et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]. //Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. [S.l.: s.n.], 802-810(2015).

    [30] Niu J W, Li S J, Mo S S et al. Affective analysis for video frames using ConvLSTM network[C]. //2018 IEEE International Conference on Communications (ICC), May 20-24, 2018, Kansas City, MO, USA., 1-6(2018).

    [31] Tang Y, Zou W B, Jin Z et al. Multi-scale spatiotemporal conv-LSTM network for video saliency detection[C]. //Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, Yokohama Japan, 362-369(2018).

    [32] Zheng Z S, Hao J B, Huang D M et al. Nearshore wave grade video monitoring based on deep learning[J]. Marine Environmental Science, 36, 934-940(2017).

    [33] Song W, Zhou X, Bi F et al. Automatic wave height detection from nearshore wave videos[J]. Journal of Image and Graphics, 25, 507-519(2020).

    [34] Buscombe D, Carini R J, Harrison S R et al. Optical wave gauging using deep neural networks[J]. Coastal Engineering, 155, 103593(2020).

    [35] Mnih V, Heess N, Graves A et al. Recurrent models of visual attention[EB/OL]. (2014-06-24)[2020-11-25]. https://arxiv.org/abs/1406.6247v1

    [36] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2020-11-25]. https://arxiv.org/abs/1409.1556

    [37] Zhu Z, Sang Q B, Zhang H. No reference video quality assessment based on spatio-temporal features and attention mechanism[J]. Laser & Optoelectronics Progress, 57, 181509(2020).

    [38] Liu M J, Cao Y Z, Zhu S Y et al. Feature fusion video target tracking method based on convolutional neural network[J]. Laser & Optoelectronics Progress, 57, 041502(2020).

    [39] Hofland B, Chen X X, Altomare C et al. Prediction formula for the spectral wave period Tm-1, 0 on mildly sloping shallow foreshores[J]. Coastal Engineering, 123, 21-28(2017).

    Wei Song, Yuanyuan Chen, Qi He, Yanling Du. Nearshore Wave Period Detection Based on Video Spatiotemporal Feature Learning[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2401001
    Download Citation