• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 425 (2021)
Yiliang WANG1、2, Yunlong AI2, Shuwei YANG2, Bingliang LIANG1、2、*, Zhenhuan ZHENG3, Sheng OUYANG2, Wen HE2, Weihua CHEN2, Changhong LIU1、2, Jianjun ZHANG2, and Zhiyong LIU2
Author Affiliations
  • 11. Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
  • 22. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • 33. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • show less
    DOI: 10.15541/jim20200388 Cite this Article
    Yiliang WANG, Yunlong AI, Shuwei YANG, Bingliang LIANG, Zhenhuan ZHENG, Sheng OUYANG, Wen HE, Weihua CHEN, Changhong LIU, Jianjun ZHANG, Zhiyong LIU. Facile Synthesis and Supercapacitor Performance of M3O4(M=FeCoCrMnMg) High Entropy Oxide Powders[J]. Journal of Inorganic Materials, 2021, 36(4): 425 Copy Citation Text show less
    References

    [1] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).

    [2] Y TSAI K, H TSAI M, W YEH J et al. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia, 61, 4887-4897(2013).

    [3] W YEH J. Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 31, 633-648(2006).

    [4] B KIM K, J WARREN P, B CANTOR et al. Devitrification of nano-scale icosahedral phase in multicomponent alloys. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 449, 983-986(2007).

    [5] C CHEN, H ZHANG, Z FAN Y et al. Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification. Intermetallics, 122, 106778(2020).

    [6] P EDALATI, R FLORIANO, P TANG Y et al. Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion. Materials Science and Engineering C, 112, 110908(2020).

    [7] N NIU C, R LAROSA C, S MIAO J et al. Magnetically-driven phase transformation strengthening in high entropy alloys. Nature Communications, 9, 1363(2018).

    [8] M ROST C, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nature Communications, 6, 8485(2015).

    [9] T JIN, H SANG X, R UNOCIC R et al. Mechanochemical- assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 30, 1707512(2018).

    [10] J HARRINGTON T, J GILD, P SARKER et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 166, 271-280(2019).

    [11] F WEI X, X LIU J, F LI et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 39, 2989-2994(2019).

    [12] D DEMIRSKYI, H BORODIANSKA, S SUZUKI T et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scripta Materialia, 164, 12-16(2019).

    [13] Y ZHANG, K SUN S, W ZHANG et al. Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process. Ceramics International, 46, 14299-14303(2020).

    [14] D LIU, Q WEN T, L YE B et al. Synthesis of superfine high- entropy metal diboride powders. Scripta Materialia, 167, 110-114(2019).

    [15] Y ZHANG, B JIANG Z, K SUN S et al. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction. Journal of the European Ceramic Society, 39, 3920-3924(2019).

    [16] Z ZHANG R, F GUCCI, Y ZHU H et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic Chemistry, 57, 13027-13033(2018).

    [17] D BERARDAN, K MEENA A, S FRANGER et al. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. Journal of Alloys and Compounds, 704, 693-700(2017).

    [18] A SARKAR, L VELASCO, D WANG et al. High entropy oxides for reversible energy storage. Nature Communications, 9, 3400-3409(2018).

    [19] J DĄBROWA, M STYGAR, A MIKUŁA et al. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Materials Letters, 216, 32-36(2018).

    [20] Q MAO A, F QUAN, Z XIANG H et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. Journal of Molecular Structure, 1194, 11-18(2019).

    [21] Q MAO A, Z XIANG H, G ZHANG Z et al. A new class of spinel high-entropy oxides with controllable magnetic properties. Journal of Magnetism and Magnetic Materials, 497, 165884(2020).

    [22] M STYGAR, J DĄBROWA, M MOŹDZIERZ et al. Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels. Journal of The European Ceramic Society, 40, 1644-1650(2020).

    [23] P CHEN K, T PEI X, L TANG et al. A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 38, 4161-4164(2018).

    [24] J GILD, M SAMIEE, L BRAUN J et al. High-entropy fluorite oxides. Journal of the European Ceramic Society, 38, 3578-3584(2018).

    [25] A SARKAR, R DJENADIC, D WANG et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 38, 2318-2327(2018).

    [26] R WITTE, A SARKAR, R KRUK et al. High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Physical Review Materials, 3, 34406(2019).

    [27] C JIANG S, T HU, J GILD et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 142, 116-120(2018).

    [28] N QIU, H CHEN, M YANG Z et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O with superior lithium storage performance. Journal of Alloys and Compounds, 777, 767-774(2019).

    [29] D BERARDAN, S FRANGER, D DRAGOE et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 10, 328-333(2016).

    [30] Q MAO A, Z XIANG H, G ZHANG Z et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. Journal of Magnetism and Magnetic Materials, 484, 245-252(2019).

    [31] D BÉRARDAN, S FRANGER, K MEENA A et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 4, 9536-9541(2016).

    [32] L WANG H, M GAO Q, L JIANG et al. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small, 7, 2454-2459(2011).

    [33] F WEI W, W CUI X, X CHEN W et al. Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors. Journal of Power Sources, 186, 543-550(2009).

    [34] V SUBRAMANIAN, W ZHU H, R VAJTAI et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. Journal of Physical Chemistry B, 109, 20207-20214(2005).

    [35] M PATIL U, S NAM M, S SOHN J et al. Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors. Journal of Materials Chemistry, 2, 19075-19083(2014).

    Yiliang WANG, Yunlong AI, Shuwei YANG, Bingliang LIANG, Zhenhuan ZHENG, Sheng OUYANG, Wen HE, Weihua CHEN, Changhong LIU, Jianjun ZHANG, Zhiyong LIU. Facile Synthesis and Supercapacitor Performance of M3O4(M=FeCoCrMnMg) High Entropy Oxide Powders[J]. Journal of Inorganic Materials, 2021, 36(4): 425
    Download Citation