[5] Kashikhin V S, Borland M, Chlachidze G et al. Longitudinal gradient dipole magnet prototype for APS at ANL[J]. IEEE Transactions on Applied Superconductivity, 26, 4002505(2016).
[7] Le Bec G, Chavanne J, Villar F et al. Magnets for the ESRF diffraction-limited light source project[J]. IEEE Transactions on Applied Superconductivity, 26, 4000107(2016).
[8] Citadini J, Vilela L N P, Basilio R et al. Sirius-details of the new 3.2 T permanent magnet superbend[J]. IEEE Transactions on Applied Superconductivity, 28, 4101104(2018).
[9] Calzolaio C, Sanfilippo S, Sidorov S et al. Design of a superconducting longitudinal gradient bend magnet for the SLS upgrade[J]. IEEE Transactions on Applied Superconductivity, 27, 4000305(2017).
[10] Streun A, Wrulich A. Compact low emittance light sources based on longitudinal gradient bending magnets[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 770, 98-112(2015).
[11] Juchno M, Venturini M, Virostek S et al. Conceptual design of superbend and hardbend magnets for Advance Light Source upgrade project[J]. IEEE Transactions on Applied Superconductivity, 30, 4100505(2020).
[12] Vianna A A, Seraphim R M, Pereira A G C et al. Conceptual design of a C-shaped 6.4 T superconducting dipole magnet[J]. IEEE Transactions on Applied Superconductivity, 32, 4002005(2022).
[13] Calzolaio C, Gabard A, Lerch P et al. Longitudinal gradient bend magnets for the upgrade of the Swiss Light Source storage ring[J]. IEEE Transactions on Applied Superconductivity, 30, 4100905(2020).
[17] Zhang Xiaolong, Shen Fei, Ren Tingting. LabVIEW-based superconducting magnet data monitor and analysis system[J]. Instrumentation Technology, 38-42(2021).
[19] Wang Tianlong, Qiu Qingquan, Jing Liwei. Measurement of magnetic properties of ferromagnetic materials at low temperature[J]. Rare Metal Materials and Engineering, 48, 898-904(2019).