• High Power Laser and Particle Beams
  • Vol. 36, Issue 8, 084002 (2024)
Chao Chen1, Shuangsong Du2, Rui Hu3, Weimin Li1..., Lin Wang1,* and Guangyao Feng1,*|Show fewer author(s)
Author Affiliations
  • 1National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
  • 2Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • 3Hefei CAS Ion Medical Technical Device Co. , Ltd, Hefei 230088, China
  • show less
    DOI: 10.11884/HPLPB202436.230407 Cite this Article
    Chao Chen, Shuangsong Du, Rui Hu, Weimin Li, Lin Wang, Guangyao Feng. Development of a superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2024, 36(8): 084002 Copy Citation Text show less
    Brightness of SLGB versus normal LGB
    Fig. 1. Brightness of SLGB versus normal LGB
    Sketch of the SLGB (superconducting longitudinal gradient bend) prototype
    Fig. 2. Sketch of the SLGB (superconducting longitudinal gradient bend) prototype
    Simulated longitudinal magnetic field profile of the SLGB protype
    Fig. 3. Simulated longitudinal magnetic field profile of the SLGB protype
    Relative deviation of the longitudinal magnetic field integral within a specific transverse range from the longitudinal magnetic field integral at the symmetrical center (different colors denote different numerical values)
    Fig. 4. Relative deviation of the longitudinal magnetic field integral within a specific transverse range from the longitudinal magnetic field integral at the symmetrical center (different colors denote different numerical values)
    Schematic assembly of the protype magnet
    Fig. 5. Schematic assembly of the protype magnet
    Sketch of the test device
    Fig. 6. Sketch of the test device
    Schematic of quench protection circuit
    Fig. 7. Schematic of quench protection circuit
    Framework of the SLGB prototype testing system
    Fig. 8. Framework of the SLGB prototype testing system
    Stepper motor driven magnetic measurement device
    Fig. 9. Stepper motor driven magnetic measurement device
    Schematic of the magnetic field measurement positions
    Fig. 10. Schematic of the magnetic field measurement positions
    Partial data from magnetic field measurements of the SLGB prototype
    Fig. 11. Partial data from magnetic field measurements of the SLGB prototype
    bare wire sizeinsulated wire sizeCu:NbTi ratiocritical current at 4.2 K, 7 T/Anumber of filamentsfilament diameter/μmRRR (273 K/10 K)
    1.20 mm×0.75 mm1.28 mm×0.83 mm1.3≥56663027.6≥566
    Table 1. Main parameters of the NbTi wire
    magnet typeyoke thickness/mmpole gap/mmpole length along beam/mmpole length transverse to beam/mmturns per layernumber of layersconductor length per coil/moperating current/Apeak field at conductor/Tstored energy/kJ
    racetrack coils, DT4 yoke and pole120463910938365002526.3514
    Table 2. Main design parameters of the SLGB prototype
    source of thermal loadfirst stage cold head thermal load/Wsecond stage cold head thermal load /W
    G10 rods0.15×40.07×4
    thermal radiation2.30.2
    current leads (thermal conduction)8×20.1×2
    current leads (joule heat)10×2
    pipes40.1
    gas0.40.03
    else10.1
    total44.30.71
    Table 3. Calculation results for the heat load of cryogenic device
    Iin/ABp/TBydz/(T·m)
    measurement195.564.52450.4004
    original simulation251.404.89850.3992
    updated simulation240.414.60190.4000
    Table 4. Comparison between measured results and simulation results of the SLGB prototype
    Chao Chen, Shuangsong Du, Rui Hu, Weimin Li, Lin Wang, Guangyao Feng. Development of a superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2024, 36(8): 084002
    Download Citation