• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802016 (2021)
Xiongmian Wei1, Di Wang1、*, Yongqiang Yang1, Changjun Han1, Jie Chen1, Yunmian Xiao1, Xin Zhou2, Xinglong Wang2, Cheng Deng1, and Yingjun Wang1
Author Affiliations
  • 1School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
  • 2Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an, Shaanxi 710038, China
  • show less
    DOI: 10.3788/CJL202148.1802016 Cite this Article Set citation alerts
    Xiongmian Wei, Di Wang, Yongqiang Yang, Changjun Han, Jie Chen, Yunmian Xiao, Xin Zhou, Xinglong Wang, Cheng Deng, Yingjun Wang. Study on Tensile Properties of Titanium Alloy Porous Structure Using Selective Laser Melting[J]. Chinese Journal of Lasers, 2021, 48(18): 1802016 Copy Citation Text show less
    References

    [1] Qin L Y, Jin Z X, Zhao S et al. Effect of α texture on mechanical behavior of TC4 alloy fabricated by laser deposition manufacturing[J]. Chinese Journal of Lasers, 47, 0102007(2020).

    [2] Ma R X, Xu G J, Liu Z Q et al. Effect of normalizing temperature on microstructures and tensile properties of laser three-dimensional-printed titanium alloy[J]. Chinese Journal of Lasers, 46, 0702008(2019).

    [3] Zhang D H. Mechanical behavior of honey-combs and sandwich panels under impact loading[D], 17-33(2018).

    [4] Zhang Q C, Yang X H, Li P et al. Bioinspired engineering of honeycomb structure-using nature to inspire human innovation[J]. Progress in Materials Science, 74, 332-400(2015).

    [5] Cheng W L, Yuan C, Qiu Q Y et al. Honeycomb sandwich structure and manufacturing process in aviation industy[J]. Aeronautical Manufacturing Technology, 58, 94-98(2015).

    [6] Dong P, Chen J L. Current status of selective laser melting for aerospace applications abroad[J]. Aerospace Manufacturing Technology, 2014, 1-5.

    [7] Du B R, Yao J, Zheng H L et al. Optimization design and manufacturing technology for aero-engine nozzle based on selective laser melting fabrication[J]. Aeronautical Manufacturing Technology, 62, 14-18(2019).

    [8] Yuan L, Ding S L, Wen C E. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review[J]. Bioactive Materials, 4, 56-70(2019).

    [9] Niu J Z, Sun Z G, Chang H et al. Review on 3D printing of biomedical titanium alloy[J]. Rare Metal Materials and Engineering, 48, 1697-1706(2019).

    [10] Jie F X, He X M, Lu Y M et al. Research progress in laser rapid forming of porous titanium and its alloys for biomedical applications[J]. Materials Review, 30, 109-114(2016).

    [11] Liu W, Li N, Zhou B et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering, 55, 128-151, 159(2019).

    [12] Fu W Q, Qian B, Liu Z Y et al. Structure and properties of 316L stainless steel lattice reinforced via selective laser melting using vanadium carbide particles[J]. Laser & Optoelectronics Progress, 56, 241401(2019).

    [13] Ahmadi S M, Yavari S A, Wauthle R et al. Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties[J]. Materials, 8, 1871-1896(2015).

    [14] Wang H L. The research of mechanical performance in Ti6Al4V porous structure based on selective laser melting[D], 24-32(2017).

    [15] Choy S Y, Sun C N, Leong K F et al. Compressive properties of functionally graded lattice structures manufactured by selective laser melting[J]. Materials & Design, 131, 112-120(2017).

    [16] Choy S Y, Sun C N, Leong K F et al. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: design, orientation and density[J]. Additive Manufacturing, 16, 213-224(2017).

    [17] Fousová M, Vojtěch D, Kubásek J et al. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process[J]. Journal of the Mechanical Behavior of Biomedical Materials, 69, 368-376(2017).

    [18] Huang C S, Xiao Z Y, Wang Z et al. Microstructures and mechanical properties of Ti-6Al-4V graded structures manufactured by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 29, 2489-2500(2019).

    [19] Yu G S, Li Z B, Li S J et al. The select of internal architecture for porous Ti alloy scaffold: a compromise between mechanical properties and permeability[J]. Materials & Design, 192, 108754(2020).

    [20] Maskery I, Aremu A O, Simonelli M et al. Mechanical properties of Ti-6Al-4V selectively laser melted parts with body-centred-cubic lattices of varying cell size[J]. Experimental Mechanics, 55, 1261-1272(2015).

    [21] Dong X N, Acuna R L, Luo Q et al. Orientation dependence of progressive post-yield behavior of human cortical bone in compression[J]. Journal of Biomechanics, 45, 2829-2834(2012).

    [22] Lambers F M, Bouman A R, Tkachenko E V et al. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone[J]. Journal of Biomechanics, 47, 3605-3612(2014).

    [23] Zhang L, Liu B, Gu Y et al. Modelling and characterization of mechanical properties of optimized honeycomb structure[J]. International Journal of Mechanics and Materials in Design, 16, 155-166(2020).

    [24] Taheri A M, Saedi S, Turabi A S et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 68, 224-231(2017).

    [25] Wu Y L. An investigation into the mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting[D], 38-55(2016).

    [26] Wang D, Dou W H, Yang Y Q. Research on selective laser melting of Ti6Al4V: surface morphologies, optimized processing zone, and ductility improvement mechanism[J]. Metals, 8, 471(2018).

    [27] Wu Y L, Wang Y, Qiao L Y et al. Study on structures and properties of hexagonal porous Ti6Al4V alloy via selective laser melting[J]. Journal of Functional Materials, 49, 6080-6087, 6092(2018).

    [28] Li J C, Zang Y Y, Wang W. Formation and mechanical properties of the TC4 porous structures by selective laser melting[J]. Rare Metal Materials and Engineering, 47, 662-666(2018).

    [29] van Bael S, Kerckhofs G, Moesen M et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures[J]. Materials Science and Engineering: A, 528, 7423-7431(2011).

    [30] Raghavendra S, Molinari A, Fontanari V et al. Tension-compression asymmetric mechanical behaviour of lattice cellular structures produced by selective laser melting[EB/OL]. [2021-02-20]. https://www.researchgate.net/publication/340140601_Tension-compression_asymmetric_mechanical_behaviour_of_lattice_cellular_structures_produced_by_selective_laser_melting

    [31] Yan C Z, Hao L, Hussein A et al. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 51, 61-73(2015).

    [32] Li Q, Zhao G R, Ma W Y et al. Mechanical properties and fracture mechanism of porous Ti6Al4V (ELI) alloy fabricated by selective laser melting[J]. Materials Reports, 34, 4073-4076(2020).

    [33] Wang Y, Chen J M, Yuan Y P. Influence of the unit cell geometrical parameter to the mechanical properties of Ti6Al4V open-porous scaffolds manufactured by selective laser melting[J]. Applied Mechanics and Materials, 851, 201-210(2016).

    [34] Kelly C N, Evans N T, Irvin C W et al. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting[J]. Materials Science and Engineering: C, 98, 726-736(2019).

    [35] Li Q, Zhao G R, Yan X C et al. Mechanical properties of porous Ti-6Al-4V titanium alloys fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 56, 011403(2019).

    [36] Pal S, Lojen G, Kokol V et al. Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the selective laser melting technique[J]. Journal of Manufacturing Processes, 35, 538-546(2018).

    [37] Liu Y J, Ren D C, Li S J et al. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting[J]. Additive Manufacturing, 32, 101060(2020).

    [38] Calladine C R. Buckminster Fuller’s “tensegrity” structures and Clerk Maxwell’s rules for the construction of stiff frames[J]. International Journal of Solids and Structures, 14, 161-172(1978).

    [39] Deshpande V S, Ashby M F, Fleck N A. Foam topology: bending versus stretching dominated architectures[J]. Acta Materialia, 49, 1035-1040(2001).

    [40] Kolken H M A, Lietaert K, van der Sloten T et al. Mechanical performance of auxetic meta-biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 104, 103658(2020).

    [41] Kasperovich G, Haubrich J, Gussone J et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting[J]. Materials & Design, 105, 160-170(2016).

    Xiongmian Wei, Di Wang, Yongqiang Yang, Changjun Han, Jie Chen, Yunmian Xiao, Xin Zhou, Xinglong Wang, Cheng Deng, Yingjun Wang. Study on Tensile Properties of Titanium Alloy Porous Structure Using Selective Laser Melting[J]. Chinese Journal of Lasers, 2021, 48(18): 1802016
    Download Citation