• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802016 (2021)
Xiongmian Wei1, Di Wang1、*, Yongqiang Yang1, Changjun Han1, Jie Chen1, Yunmian Xiao1, Xin Zhou2, Xinglong Wang2, Cheng Deng1, and Yingjun Wang1
Author Affiliations
  • 1School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
  • 2Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an, Shaanxi 710038, China
  • show less
    DOI: 10.3788/CJL202148.1802016 Cite this Article Set citation alerts
    Xiongmian Wei, Di Wang, Yongqiang Yang, Changjun Han, Jie Chen, Yunmian Xiao, Xin Zhou, Xinglong Wang, Cheng Deng, Yingjun Wang. Study on Tensile Properties of Titanium Alloy Porous Structure Using Selective Laser Melting[J]. Chinese Journal of Lasers, 2021, 48(18): 1802016 Copy Citation Text show less
    Tensile specimen with porous structure. (a) Unit body; (b) stretching piece size; (c) porous tensile piece
    Fig. 1. Tensile specimen with porous structure. (a) Unit body; (b) stretching piece size; (c) porous tensile piece
    SLM manufacturing equipment and principle[26]
    Fig. 2. SLM manufacturing equipment and principle[26]
    Tensile specimen after forming. (a) Before cutting; (b) after turning
    Fig. 3. Tensile specimen after forming. (a) Before cutting; (b) after turning
    Structural parameters of tensile specimens after forming. (a) Internal condition; (b) optical microstructure
    Fig. 4. Structural parameters of tensile specimens after forming. (a) Internal condition; (b) optical microstructure
    Simulated stress-strain curves of porous structure. (a) BCC; (b) BCCZ; (c) honeycomb; (d) stress nephogram of 70% strain
    Fig. 5. Simulated stress-strain curves of porous structure. (a) BCC; (b) BCCZ; (c) honeycomb; (d) stress nephogram of 70% strain
    Simulated tensile strength of porous structure and its fitting curves with porosity. (a) Simulated tensile strength; (b) fitting curves
    Fig. 6. Simulated tensile strength of porous structure and its fitting curves with porosity. (a) Simulated tensile strength; (b) fitting curves
    Experimental stress-strain curves of porous structure. (a) BCC; (b) BCCZ; (c) honeycomb
    Fig. 7. Experimental stress-strain curves of porous structure. (a) BCC; (b) BCCZ; (c) honeycomb
    Mechanical properties of porous structure with different porosity. (a) Experimental tensile strength; (b) experimental yield strength; (c) experimental modulus of elasticity; (d) experimental tensile strength fitting curves; (e) specific strength
    Fig. 8. Mechanical properties of porous structure with different porosity. (a) Experimental tensile strength; (b) experimental yield strength; (c) experimental modulus of elasticity; (d) experimental tensile strength fitting curves; (e) specific strength
    Fracture position of porous tensile specimen. (a) BCC; (b) BCCZ; (c) honeycomb
    Fig. 9. Fracture position of porous tensile specimen. (a) BCC; (b) BCCZ; (c) honeycomb
    Fracture morphology of porous tensile specimen. (a)(b)(c) BCC-20%; (d) BCCZ-50%; (e)(f) BCC-50%
    Fig. 10. Fracture morphology of porous tensile specimen. (a)(b)(c) BCC-20%; (d) BCCZ-50%; (e)(f) BCC-50%
    Stress-strain curves of porous tensile parts under different conditions. (a) (b) BCC; (c) (d) BCCZ; (e) (f) honeycomb
    Fig. 11. Stress-strain curves of porous tensile parts under different conditions. (a) (b) BCC; (c) (d) BCCZ; (e) (f) honeycomb
    Connective sections of porous structures. (a) Minimum cross section; (b) cross section variation; (c) fitting curves of cross section variation
    Fig. 12. Connective sections of porous structures. (a) Minimum cross section; (b) cross section variation; (c) fitting curves of cross section variation
    Porous structureCell porosity /%Tensile part porosity /%D /μmActual diameter /μmError /%
    BCC2010.99798836±164.80
    BCC3016.61714719±250.70
    BCC4022.51630648±252.86
    BCC5028.33558588±115.32
    BCC6033.96484551±1613.84
    BCCZ2011.06762800±25.03
    BCCZ3016.78676701±163.70
    BCCZ4022.67600660±69.94
    BCCZ5028.24528580±89.85
    BCCZ6033.96456515±1412.94
    Honeycomb2010.68546549±80.55
    Honeycomb3016.27480505±55.21
    Honeycomb4022.53428465±58.72
    Honeycomb5027.72380410±77.89
    Honeycomb6033.60328382±216.46
    Table 1. Designed size and actual size of porous structure
    ElementAlVFeONHOtherTi
    Mass fraction/%6.50003.90000.19000.11000.02000.0034<0.4000Bal.
    Table 2. Powder composition of Ti-6Al-4V
    Laserpower /WScanning speed /(mm·s-1)Layerthickness /μmHatch spacing /mmLaser spotcompensation /mmLaser spotdiamter /μmMass fraction of oxygen /%Shielding gas
    1501200300.0650.0350~70≤0.01Ar
    Table 3. Process parameters of Ti-6Al-4V powder
    Xiongmian Wei, Di Wang, Yongqiang Yang, Changjun Han, Jie Chen, Yunmian Xiao, Xin Zhou, Xinglong Wang, Cheng Deng, Yingjun Wang. Study on Tensile Properties of Titanium Alloy Porous Structure Using Selective Laser Melting[J]. Chinese Journal of Lasers, 2021, 48(18): 1802016
    Download Citation