• Chinese Optics Letters
  • Vol. 18, Issue 9, 090602 (2020)
Shaowen Lu1、2、3、*, Yu Zhou1, Funan Zhu2、3, Jianfeng Sun1、2, Yan Yang3, Ren Zhu3, Shengnan Hu3, Xiaoxi Zhang3, Xiaolei Zhu1、2, Xia Hou2、3、**, and Weibiao Chen1、2
Author Affiliations
  • 1Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Laboratory of Space Laser Engineering, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/COL202018.090602 Cite this Article Set citation alerts
    Shaowen Lu, Yu Zhou, Funan Zhu, Jianfeng Sun, Yan Yang, Ren Zhu, Shengnan Hu, Xiaoxi Zhang, Xiaolei Zhu, Xia Hou, Weibiao Chen. Digital-analog hybrid optical phase-lock loop for optical quadrature phase-shift keying[J]. Chinese Optics Letters, 2020, 18(9): 090602 Copy Citation Text show less
    Schematic of the QPSK fourth-power phase-lock loop.
    Fig. 1. Schematic of the QPSK fourth-power phase-lock loop.
    Principle of electro-optic modulation frequency shift as OVCO.
    Fig. 2. Principle of electro-optic modulation frequency shift as OVCO.
    Linear model of the analog fourth-power OPLL.
    Fig. 3. Linear model of the analog fourth-power OPLL.
    Phase-error standard deviation versus loop natural frequency.
    Fig. 4. Phase-error standard deviation versus loop natural frequency.
    Optimized natural frequency versus loop delay time.
    Fig. 5. Optimized natural frequency versus loop delay time.
    (a) Frequency fluctuation PSD of the transmitter (TX)/receiver (RX) laser and (b) the constellation of the QPSK modulation signal.
    Fig. 6. (a) Frequency fluctuation PSD of the transmitter (TX)/receiver (RX) laser and (b) the constellation of the QPSK modulation signal.
    QPSK fourth-power phase-lock loop simulation: (a) the Lissajous of the original signal sampled by 125 MSa/s; (b) the fourth power of the original signal; (c) phase error of the phase-locked state; (d) the constellation of the recovered IQ signal.
    Fig. 7. QPSK fourth-power phase-lock loop simulation: (a) the Lissajous of the original signal sampled by 125 MSa/s; (b) the fourth power of the original signal; (c) phase error of the phase-locked state; (d) the constellation of the recovered IQ signal.
    BER versus received signal power for 2.5 Gbaud/5 Gbaud.
    Fig. 8. BER versus received signal power for 2.5 Gbaud/5 Gbaud.
    ParameterSymbolValue
    Laser wavelengthλ1549.72 nm
    Received signal powerPs−45 to 35dBm
    Communication rateRb10 Gbps
    Linewidth (TX/RX)Δν300 Hz
    ResponsivityR0.85 A/W
    Power-splitting ratioK0.5
    Table 1. Experimental Parameters
    NameParameter
    Fourth-power look-up tableInput bitwidth: 7 bitOutput bitwidth: 10 bit
    First-order active loop filterInput bitwidth: 10 bitOutput bitwidth: 32 bit
    Direct digital synthesizerPhase accumulator word: 32Output bitwidth: 16 bit
    Working clock125 MHz
    Table 2. Specification List about FPGA
    Shaowen Lu, Yu Zhou, Funan Zhu, Jianfeng Sun, Yan Yang, Ren Zhu, Shengnan Hu, Xiaoxi Zhang, Xiaolei Zhu, Xia Hou, Weibiao Chen. Digital-analog hybrid optical phase-lock loop for optical quadrature phase-shift keying[J]. Chinese Optics Letters, 2020, 18(9): 090602
    Download Citation