• Laser & Optoelectronics Progress
  • Vol. 60, Issue 5, 0500001 (2023)
Lili Gui†、*, Maoyu Feng1、†, Xianglai Liao, Feifei Yin, and Kun Xu
Author Affiliations
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.3788/LOP220768 Cite this Article Set citation alerts
    Lili Gui, Maoyu Feng, Xianglai Liao, Feifei Yin, Kun Xu. Research Progresses and Applications of Chiral Metasurfaces[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500001 Copy Citation Text show less
    References

    [1] Kelvin W T[M]. Baltimore lectures on molecular dynamics and the wave theory of light(1904).

    [2] Moshe A B, Szwarcman D, Markovich G. Size dependence of chiroptical activity in colloidal quantum dots[J]. ACS Nano, 5, 9034-9043(2011).

    [3] Berova N, Polavarapu P L, Nakanishi K et al[M]. Comprehensive chiroptical spectroscopy: applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules(2012).

    [4] Tsukube H, Shinoda S. Lanthanide complexes in molecular recognition and chirality sensing of biological substrates[J]. Chemical Reviews, 102, 2389-2404(2002).

    [5] Chela-Flores J. Comments on a novel approach to the role of chirality in the origin of life[J]. Chirality, 3, 389-392(1991).

    [6] Hentschel M, Schäferling M, Duan X Y et al. Chiral plasmonics[J]. Science Advances, 3, e1602735(2017).

    [7] Asano N, Ikeda K, Yu L et al. The L-enantiomers of D-sugar-mimicking iminosugars are noncompetitive inhibitors of D-glycohydrolase?[J]. Tetrahedron: Asymmetry, 16, 223-229(2005).

    [8] Schnell M, Sarriugarte P, Neuman T et al. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces[J]. Nano Letters, 16, 663-670(2016).

    [9] Fedotov V A, Mladyonov P L, Prosvirnin S L et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure[J]. Physical Review Letters, 97, 167401(2006).

    [10] Yannopapas V. Circular dichroism in planar nonchiral plasmonic metamaterials[J]. Optics Letters, 34, 632-634(2009).

    [11] Konishi K, Sugimoto T, Bai B et al. Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings[J]. Optics Express, 15, 9575-9583(2007).

    [12] Okamoto H. Local optical activity of nano- to microscale materials and plasmons[J]. Journal of Materials Chemistry C, 7, 14771-14787(2019).

    [13] Cao T, Mao L B, Qiu Y M et al. Fano resonance in asymmetric plasmonic nanostructure: separation of sub-10 nm enantiomers[J]. Advanced Optical Materials, 7, 1801172(2019).

    [14] Cao T, Qiu Y M. Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region[J]. Nanoscale, 10, 566-574(2018).

    [15] Haesler J, Schindelholz I, Riguet E et al. Absolute configuration of chirally deuterated neopentane[J]. Nature, 446, 526-529(2007).

    [16] Schreiber R, Luong N, Fan Z Y et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism[J]. Nature Communications, 4, 2948(2013).

    [17] Selinger R L B, Selinger J V, Malanoski A P et al. Shape selection in chiral self-assembly[J]. Physical Review Letters, 93, 158103(2004).

    [18] Lee S J, Lin W B. A chiral molecular square with metallo-corners for enantioselective sensing[J]. Journal of the American Chemical Society, 124, 4554-4555(2002).

    [19] McBride W G. Thalidomide and congenital abnormalities[J]. The Lancet, 278, 1358(1961).

    [20] Wang Z J, Cheng F, Winsor T et al. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications[J]. Nanotechnology, 27, 412001(2016).

    [21] Tseng M L, Jahani Y, Leitis A et al. Dielectric metasurfaces enabling advanced optical biosensors[J]. ACS Photonics, 8, 47-60(2021).

    [22] Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 8, 889-898(2014).

    [23] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 305, 788-792(2004).

    [24] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011).

    [25] Luo Y, Chi C, Jiang M L et al. Plasmonic chiral nanostructures: chiroptical effects and applications[J]. Advanced Optical Materials, 5, 1700040(2017).

    [26] Zhang H C, He P H, Niu L Y et al. Spoof plasmonic metamaterials[J]. Acta Optica Sinica, 41, 0124001(2021).

    [27] Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 332, 333-336(2011).

    [28] Jack C, Karimullah A S, Leyman R et al. Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures[J]. Nano Letters, 16, 5806-5814(2016).

    [29] Zhao Y, Askarpour A N, Sun L Y et al. Chirality detection of enantiomers using twisted optical metamaterials[J]. Nature Communications, 8, 14180(2017).

    [30] Yin X H, Schäferling M, Michel A K U et al. Active chiral plasmonics[J]. Nano Letters, 15, 4255-4260(2015).

    [31] Halas N J, Lal S, Chang W S et al. Plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 111, 3913-3961(2011).

    [32] Wang P, Nasir M E, Krasavin A V et al. Plasmonic metamaterials for nanochemistry and sensing[J]. Accounts of Chemical Research, 52, 3018-3028(2019).

    [33] McKendry R, Theoclitou M E, Rayment T et al. Chiral discrimination by chemical force microscopy[J]. Nature, 391, 566-568(1998).

    [34] Alizadeh M H, Reinhard B M. Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators[J]. ACS Photonics, 2, 361-368(2015).

    [35] Zhao Y, Saleh A A E, Dionne J A. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers[J]. ACS Photonics, 3, 304-309(2016).

    [36] Rodrigues S P, Cui Y H, Lan S F et al. Metamaterials enable chiral-selective enhancement of two-photon luminescence from quantum emitters[J]. Advanced Materials, 27, 1124-1130(2015).

    [37] Li Z W, Li Y, Han T Y et al. Tailoring MoS2 exciton-plasmon interaction by optical spin-orbit coupling[J]. ACS Nano, 11, 1165-1171(2017).

    [38] Bliokh K Y, Niv A, Kleiner V et al. Geometrodynamics of spinning light[J]. Nature Photonics, 2, 748-753(2008).

    [39] O’Connor D, Ginzburg P, Rodríguez-Fortuño F J et al. Spin-orbit coupling in surface plasmon scattering by nanostructures[J]. Nature Communications, 5, 5327(2014).

    [40] Karimullah A S, Jack C, Tullius R et al. Disposable plasmonics: plastic templated plasmonic metamaterials with tunable chirality[J]. Advanced Materials, 27, 5610-5616(2015).

    [41] Yoo S, Park Q H. Metamaterials and chiral sensing: a review of fundamentals and applications[J]. Nanophotonics, 8, 249-261(2019).

    [42] Du W, Wen X L, Gérard D et al. Chiral plasmonics and enhanced chiral light-matter interactions[J]. Science China Physics, Mechanics & Astronomy, 63, 244201(2020).

    [43] Fasman G D[M]. Circular dichroism and the conformational analysis of biomolecules(1996).

    [44] Tang Y Q, Cohen A E. Optical chirality and its interaction with matter[J]. Physical Review Letters, 104, 163901(2010).

    [45] García-Etxarri A, Dionne J A. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas[J]. Physical Review B, 87, 235409(2013).

    [46] Solomon M L, Hu J, Lawrence M et al. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces[J]. ACS Photonics, 6, 43-49(2019).

    [47] Maier S A[M]. Plasmonics: fundamentals and applications(2007).

    [48] Kelly K L, Coronado E, Zhao L L et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 107, 668-677(2003).

    [49] Yin X H, Schäferling M, Metzger B et al. Interpreting chiral nanophotonic spectra: the plasmonic born-Kuhn model[J]. Nano Letters, 13, 6238-6243(2013).

    [50] Kruk S, Kivshar Y. Functional meta-optics and nanophotonics governed by Mie resonances[J]. ACS Photonics, 4, 2638-2649(2017).

    [51] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).

    [52] Bohren C F, Huffman D R[M]. Absorption and scattering of light by small particles(1998).

    [53] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).

    [54] Liu Z G, Du H F, Li J F et al. Nano-kirigami with giant optical chirality[J]. Science Advances, 4, eaat4436(2018).

    [55] Hentschel M, Schäferling M, Weiss T et al. Three-dimensional chiral plasmonic oligomers[J]. Nano Letters, 12, 2542-2547(2012).

    [56] Walsh G F, Dal Negro L. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays[J]. Nano Letters, 13, 3111-3117(2013).

    [57] Belardini A, Larciprete M C, Centini M et al. Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires[J]. Physical Review Letters, 107, 257401(2011).

    [58] Valev V K, Baumberg J J, De Clercq B et al. Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale[J]. Advanced Materials, 26, 4074-4081(2014).

    [59] Gui L L, Hentschel M, Defrance J et al. Nonlinear born-Kuhn analog for chiral plasmonics[J]. ACS Photonics, 6, 3306-3314(2019).

    [60] Kang L, Rodrigues S P, Taghinejad M et al. Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror[J]. Nano Letters, 17, 7102-7109(2017).

    [61] Collins G P. Science and Culture: Kirigami and technology cut a fine figure, together[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 240-241(2016).

    [62] Valentine J, Zhang S, Zentgraf T et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 455, 376-379(2008).

    [63] Esposito M, Tasco V, Todisco F et al. Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition[J]. Advanced Optical Materials, 2, 154-161(2014).

    [64] Alivisatos A P, Johnsson K P, Peng X G et al. Organization of ‘nanocrystal molecules’ using DNA[J]. Nature, 382, 609-611(1996).

    [65] Jasti R, Bertozzi C R. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality[J]. Chemical Physics Letters, 494, 1-7(2010).

    [66] Lu X X, Wu J, Zhu Q N et al. Circular dichroism from single plasmonic nanostructures with extrinsic chirality[J]. Nanoscale, 6, 14244-14253(2014).

    [67] Shen X B, Asenjo-Garcia A, Liu Q et al. Three-dimensional plasmonic chiral tetramers assembled by DNA origami[J]. Nano Letters, 13, 2128-2133(2013).

    [68] Song C Y, Blaber M G, Zhao G P et al. Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures[J]. Nano Letters, 13, 3256-3261(2013).

    [69] Kuzyk A, Schreiber R, Fan Z Y et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response[J]. Nature, 483, 311-314(2012).

    [70] Lee H E, Ahn H Y, Mun J et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles[J]. Nature, 556, 360-365(2018).

    [71] Lin L H, Lepeshov S, Krasnok A et al. All-optical reconfigurable chiral meta-molecules[J]. Materials Today, 25, 10-20(2019).

    [72] Sersic I, van de Haar M A, Arango F B et al. Ubiquity of optical activity in planar metamaterial scatterers[J]. Physical Review Letters, 108, 223903(2012).

    [73] Schäferling M, Dregely D, Hentschel M et al. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures[J]. Physical Review X, 2, 031010(2012).

    [74] Narushima T, Okamoto H. Strong nanoscale optical activity localized in two-dimensional chiral metal nanostructures[J]. The Journal of Physical Chemistry C, 117, 23964-23969(2013).

    [75] Yan C, Wang X L, Raziman T V et al. Twisting fluorescence through extrinsic chiral antennas[J]. Nano Letters, 17, 2265-2272(2017).

    [76] Ye W M, Yuan X D, Guo C C et al. Large chiroptical effects in planar chiral metamaterials[J]. Physical Review Applied, 7, 054003(2017).

    [77] Zhou Z K, Peng X N, Yang Z J et al. Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission[J]. Nano Letters, 11, 49-55(2011).

    [78] Hentschel M, Saliba M, Vogelgesang R et al. Transition from isolated to collective modes in plasmonic oligomers[J]. Nano Letters, 10, 2721-2726(2010).

    [79] Hao F, Sonnefraud Y, van Dorpe P et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano Letters, 8, 3983-3988(2008).

    [80] Zu S, Bao Y J, Fang Z Y. Planar plasmonic chiral nanostructures[J]. Nanoscale, 8, 3900-3905(2016).

    [81] Valev V K, Smisdom N, Silhanek A V et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures[J]. Nano Letters, 9, 3945-3948(2009).

    [82] Aieta F, Genevet P, Kats M A et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 12, 4932-4936(2012).

    [83] Fu Y H, Kuznetsov A I, Miroshnichenko A E et al. Directional visible light scattering by silicon nanoparticles[J]. Nature Communications, 4, 1527(2013).

    [84] Moitra P, Slovick B A, Li W et al. Large-scale all-dielectric metamaterial perfect reflectors[J]. ACS Photonics, 2, 692-698(2015).

    [85] Moitra P, Slovick B A, Yu Z G et al. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector[J]. Applied Physics Letters, 104, 171102(2014).

    [86] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [87] Staude I, Miroshnichenko A E, Decker M et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 7, 7824-7832(2013).

    [88] Bakker R M, Permyakov D, Yu Y F et al. Magnetic and electric hotspots with silicon nanodimers[J]. Nano Letters, 15, 2137-2142(2015).

    [89] Kang L, Wang C Y, Guo X X et al. Nonlinear chiral meta-mirrors: enabling technology for ultrafast switching of light polarization[J]. Nano Letters, 20, 2047-2055(2020).

    [90] Tanaka K, Arslan D, Fasold S et al. Chiral bilayer all-dielectric metasurfaces[J]. ACS Nano, 14, 15926-15935(2020).

    [91] Mohammadi E, Tavakoli A, Dehkhoda P et al. Accessible superchiral near-fields driven by tailored electric and magnetic resonances in all-dielectric nanostructures[J]. ACS Photonics, 6, 1939-1946(2019).

    [92] Hu J, Lawrence M, Dionne J A. High quality factor dielectric metasurfaces for ultraviolet circular dichroism spectroscopy[J]. ACS Photonics, 7, 36-42(2020).

    [93] Yao K, Zheng Y B. Near-ultraviolet dielectric metasurfaces: from surface-enhanced circular dichroism spectroscopy to polarization-preserving mirrors[J]. Journal of Physical Chemistry C, 123, 11814-11822(2019).

    [94] Qin J, Huang F, Li X Y et al. Enhanced second harmonic generation from ferroelectric HfO2-based hybrid metasurfaces[J]. ACS Nano, 13, 1213-1222(2019).

    [95] Zhang C, Divitt S, Fan Q B et al. All-dielectric deep ultraviolet metasurfaces[C], FM3C.3(2019).

    [96] Hemmatyar O, Abdollahramezani S, Kiarashinejad Y et al. Structural colors by fano-resonances supported in all-dielectric metasurfaces made of HfO2[C], FM5C.4(2019).

    [97] Yoo S, Park Q H. Chiral light-matter interaction in optical resonators[J]. Physical Review Letters, 114, 203003(2015).

    [98] Bonner W A. The origin and amplification of biomolecular chirality[J]. Origins of Life and Evolution of the Biosphere, 21, 59-111(1991).

    [99] Hendry E, Carpy T, Johnston J et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields[J]. Nature Nanotechnology, 5, 783-787(2010).

    [100] García-Guirado J, Svedendahl M, Puigdollers J et al. Enhanced chiral sensing with dielectric nanoresonators[J]. Nano Letters, 20, 585-591(2020).

    [101] Shi Y Z, Zhu T T, Zhang T H et al. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation[J]. Light: Science & Applications, 9, 62(2020).

    [102] Kan T, Isozaki A, Kanda N et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nature Communications, 6, 8422(2015).

    [103] Liu Z G, Xu Y, Ji C Y et al. Fano-enhanced circular dichroism in deformable stereo metasurfaces[J]. Advanced Materials, 32, e1907077(2020).

    [104] Liao K, Gan T Y, Hu X Y et al. On-chip nanophotonic devices based on dielectric metasurfaces[J]. Acta Optica Sinica, 41, 0823001(2021).

    [105] Xiao S, Xu X L. On-chip chiral nanophotonic devices based on semiconductor quantum dots[J]. Acta Optica Sinica, 42, 0327009(2022).

    Lili Gui, Maoyu Feng, Xianglai Liao, Feifei Yin, Kun Xu. Research Progresses and Applications of Chiral Metasurfaces[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500001
    Download Citation