• Chinese Journal of Quantum Electronics
  • Vol. 33, Issue 3, 263 (2016)
Xinxing HAO* and Biao LI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2016.03.002 Cite this Article
    HAO Xinxing, LI Biao. Finite symmetry group solutions to generalized variable coefficient (3+1)-D nonlinear Schrdinger equation[J]. Chinese Journal of Quantum Electronics, 2016, 33(3): 263 Copy Citation Text show less
    References

    [1] Vázquez L, Streit L, Pérez-García V. Nonlinear Klein-Gordon and Schrdinger Systems: Theory and Applications[M]. Singapore: World Scientific, 1997.

    [2] Kivshar Y S, Agrawal G P. Optical Solitons: From Fibers to Photonic Crystals[M]. New York: Academic Press, 2003.

    [6] Pitaevskii L P, Stringari S. Bose-Einstein Condensation[M]. New York: Oxford University Press, 2003.

    [7] Li H M. Exact self-similar solitary waves and collisions in nonlinear optical media[J]. Chin. Phys. B, 2008, 17(3): 759-763.

    [8] Huang G X. Second harmonic generation of propagating collective excitations in Bose-Einstein condensates[J]. Chin. Phys. B, 2004, 13(11): 1866-1876.

    [9] Lv Z Q, Zhang L M, Wang Y Sh. A conservative Fourier pseudospectral algorithm for the nonlinear Schrdinger equation[J]. Chin. Phys. B, 2014, 23(12): 120203.

    [10] Jiang Ch L, Sun J Q. A high order energy preserving scheme for the strongly coupled nonlinear Schrdinger system[J]. Chin. Phys. B, 2014, 23(5): 050202.

    [11] Yin J L, Zhao L W, Tian L X. Chaos control in the nonlinear Schrdinger equation with Kerr law nonlinearity[J]. Chin. Phys. B, 2014, 23(2): 020204.

    [12] Bluman G W, Cole J D. Similarity Methods for Differential Equations[M]. Berlin: Springer, 1974.

    [13] Olver P J, Rosenau P. The construction of special solutions to partial differential equations[J]. Phys. Lett. A, 1986, 114(3): 107-112.

    [14] Wang J, Li B. Symmetry and general symmetry groups of the coupled Kadomtsev-Petviashvili equation[J]. Chin. Phys. B, 2009, 18(6): 02109.

    [15] Yao R X, J X Y, et al. Infinite series symmetry reduction solutions to the modified KdV-Burgers equation[J]. Chin. Phys. B, 2009, 18(5): 01821.

    [16] Jia M. Lie point symmetry algebras and finite transformation groups of the general Broer-Kaup system[J]. Chin. Phys. B, 2007, 1(6): 1534-1544.

    [17] Ma H C, Lou S Y. Finite symmetry transformation groups and exact solutions of Lax integrable systems[J]. Chin. Phys. B, 2005, 14(8): 1495-1500.

    [18] Li J H, Lou S Y. Kac-Moody-Virasoro symmetry algebra of a (2+1)-dimensional bilinear system[J]. Chin. Phys. B, 2008, 17(3): 747-753.

    [19] Lian Z J, Cheng L L, Lou S Y. Painlevé property, symmetries and symmetry reductions of the coupled Burgers system[J]. Chin. Phys. B, 2005, 14(8): 1486-1494.

    [20] Gagnon L, Wtntemitz P. Symmetry classes of variable coefficient nonlinear Schrdinger equations[J]. J. Phys. A: Math. Gen., 1993, 2(23): 7061.

    [21] Mansfield E L, Reid G J, Clarkson P A. Nonclassical reductions of a 3+1-cubic nonlinear Schrding system[J]. Comput. Phys. Commun., 1998, 115(2-3): 460-488.

    [22] Li B, Li Y Q, Chen Y. Finite symmetry transformation groups and some exact solutions to (2+1)-dimensional cubic nonlinear Schrdinger equation[J]. Commun. Theor. Phys., 2009, 51(5):773-776.

    [23] Wang J, Li B, Ye W C. Approximate solution for the Klein-Gordon-Schrdinger equation by the homotopy analysis method[J]. Chin. Phys. B, 2010, 19(3): 030401.

    [24] Wang H, Li B. Solitons for a generalized variable-coefficient nonlinear Schrdinger equation[J]. Chin. Phys. B, 2011, 20(4): 040203.

    [25] Hu X, Li B. Exact analytical solutions of three-dimensional Gross-Pitaevskii equation with time-space modulation[J]. Chin. Phys. B, 2011, 20(5): 050315.

    [26] Li B, Zhang X F, Li Y Q, et al. Solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic and complex potential[J]. Phys. Rev. A, 2008, 78(2): 023608.

    [27] Jing J C, Li B. Extended symmetry transformation of (3+1)-dimensional generalized nonlinear Schrdinger equation with variable coefficients[J]. Chin. Phys. B, 2013, 22(1): 010303.

    [28] Camassa R, Hyman J M, Luce B P. Nonlinear waves and solitons in physical systems[J]. Physica D: Nonlinear Phenomena, 1998, 123(1-4): 1-20.

    [29] Fushchych W, Nikitin A. Symmetry of Equations of Quantum Mechanics[M]. New York : Allerton Press, 1994.

    [30] Boyer C P. The maximal ′kinematical′ invariance group for an arbitrary potential[J]. Helv. Phys. Acta, 1974, 47(5): 589-605.

    [31] Truax D R. Symmetry of time-dependent Schrdinger equations. I. A classification of time-dependent potentials by their maximal kinematical algebras[J]. J. Math. Phys., 1981, 22: 1959.

    [32] Ruan H Y, Chen Y X. The study of exact solutions to the nonlinear Schrdinger equations in optical fiber[J]. J. Phys. Soc. Japan, 2003, 72(6): 1350-1355.

    [33] Ruan H Y, Chen Y X. Exact solutions of space-time dependent non-linear Schrdinger equations[J]. Math. Methods Appl. Sci., 2004, 27(9): 1077-1087.

    [34] Ruan H Y, Chen Y X, et al. General symmetry approach to solve variable-coefficient nonlinear equation[J]. Commun. Theor. Phys., 2001, 35(6): 641-646.

    [35] Ruan H Y, Li H J, Chen Y X. The application of the extending symmetry group approach in optical soliton communication[J]. J. Phys. A: Math. Gen., 2005, 38: 3995-4008.

    [36] Li Z F, et al. The extended symmetry approach for studying the general Korteweg-de Vries-type equation[J]. Chin. Phys. B, 2010, 19(4): 040201.

    HAO Xinxing, LI Biao. Finite symmetry group solutions to generalized variable coefficient (3+1)-D nonlinear Schrdinger equation[J]. Chinese Journal of Quantum Electronics, 2016, 33(3): 263
    Download Citation