• Laser & Optoelectronics Progress
  • Vol. 48, Issue 1, 10602 (2011)
Dai Nengli*, Li Yang, Peng Jinggang, and Li Jinyan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop48.010602 Cite this Article Set citation alerts
    Dai Nengli, Li Yang, Peng Jinggang, Li Jinyan. Development of Dispersion-Flattened Photonic Crystal Fibers[J]. Laser & Optoelectronics Progress, 2011, 48(1): 10602 Copy Citation Text show less
    References

    [1] T. A. Birks, J. C. Knight, P. St. J. Russell. Endless single-mode photonic crystal fiber[J]. Opt. Lett., 1997, 22(13): 961~963

    [2] A. Ferrando, E. Silvestre, J. J. Miret et al.. Nearly zero ultraflattened dispersion in photonic crystal fibers[J]. Opt. Lett., 2000, 25(11): 790~792

    [3] A. Ferrando, E. Silvestre, P. Andres et al.. Designing the properties of dispersion-flattened photonic crystal fibers[J]. Opt. Lett., 2001, 9(13): 687~697

    [4] F. Poli, A. Cucinotta, S. Selleri et al.. Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers[J]. IEEE Photon. Technol. Lett., 2004, 16(4): 1065~1067

    [5] K. Saitoh, M. Koshiba, T. Hasegawa et al.. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion[J]. Opt. Lett., 2003, 11(8): 843~852

    [6] K. P. Hansen. Dispersion flattened hybrid-core nonlinear photonic crystal fiber[J]. Opt. Lett., 2003, 11(13): 1503~1509

    [7] K. Saitoh, N. Florous, M. Koshiba et al.. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses[J]. Opt. Lett., 2005, 43(21): 8365~8371

    [8] S. Selleri, A. Cucinotta, F. Poli et al.. Optical parametric amplification in dispersion-flattened highly nonlinear photonic crystal fibers[C]. SPIE, 2005, 5950: K.1~K.10

    [9] K. Saitoh, M. Koshiba. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J]. Opt. Lett., 2004, 12(10): 2027~2032

    [10] T. L. Wu, C. H. Chao. A novel ultraflattened dispersion photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(1): 67~69

    [11] J. Y. Wang, C. Jiang, W. S. Hu et al.. Modified design of photonic crystal fibers with flattened dispersion[J]. Optics and Laser Technology, 2006, 38(3): 169~172

    [12] Z. L. Liu, X. D. Liu, S. G. Li et al.. A broadband ultra flattened chromatic dispersion microstructured fiber for optical communications[J]. Opt. Commun., 2007, 273(1): 92~96

    [13] K. M. Gundu, M. Kolesik, J. V. Moloney et al.. Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers[J]. Opt. Lett., 2006, 14(15): 6870~6878

    [14] K. Saitoh, N. J. Florous, M. Koshiba. Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach[J]. Opt. Lett., 2006, 31(1): 26~28

    [15] T. Yamamoto, H. Kubota, S. Kawanishi et al.. Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber[J]. Opt. Express, 2003, 11(13): 1537~1540

    [16] K. Chow, Y. Takushima, C. Lin et al.. Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion[C]. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2006. 1~6

    [17] Y. Xu, X. Ren, Z. Wang et al.. Flat super-continuum generation at 1550 nm in a dispersion-flattened microstructure fiber using picosecond pulse[J]. Chin. Phys. Lett., 2007, 24(3): 734~737

    [18] Y. Xu, X. Ren, Z. Wang et al.. Flatly broadened super-continuum generation at 10 Gbit/s using dispersion flattened photonic crystal fibre with small normal dispersion[J]. Electron. Lett., 2007, 43(2): 87~88

    [19] C. S. Arismar, J. D. Marconi, A. A. Rieznik et al.. Multiple four-wave mixing in ultra-flattened dispersion photonic crystal fibers[C]. Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, 2008. Vol-s: 1~8

    [20] X. Zhang, X. M. Ren, Z. N. Wang et al.. Four-wave mixing based 10-Gb/s tunable wavelength conversion in dispersion-flattened microstructure fibers[J]. Chin. Opt. Lett., 2007, 5(7): 386~388

    [21] Wang Qiuguo, Zhang Hu, Zhang Xia et al.. Experiment demonstration of four-wave mixing in photonic crystal fiber[J]. Semiconductor Optoelectronics, 2008, 29(3): 415~417

    [22] Zhang Lan, Yang Bojun, Wang Qiuguo et al.. All-optical wavelength conversion based on photonic crystal fiber[J]. Acta Photonica SInica, 2008, 37(11): 2203~2205

    [23] Zhou Huili, Zhang Xia, Gao Jian et al.. Theoretical and experiment analysis of wavelength conversion in dispersion-flatted photonic crystal fiber[J]. J. Optoelectronics·Laser, 2009, 20(1): 28~31

    [24] Shao Xiaojie, Yang Dongxiao, Gen Dan. Wavelength conversion based on four-wave mixing in photonic crystal fiber[J]. Acta Photonica Sinica, 2009, 38(3): 652~655

    CLP Journals

    [1] Geng Pengcheng, Zhang Weigang, Zhang Shanshan, Ruan Juan. Design of New Type Single-Polarization Single-Mode Photonic Crystal Fiber with Wide Bandwidth[J]. Acta Optica Sinica, 2011, 31(7): 706001

    [2] Lin Jianqiang, Shi Zhidong, He Wei, Ji Minning, Xue Qin. A Highly Birefringent Holey Fiber with Round Lattice[J]. Laser & Optoelectronics Progress, 2011, 48(12): 120601

    [3] Wang Dan, Zheng Yi. Design and Numerical Investigation of a Novel Microstructured Optical Fiber[J]. Acta Optica Sinica, 2012, 32(8): 806003

    [4] Wang Dan, Zheng Yi. Numerical Simulation and Analysis of Double Cladding Photonic Crystal Fiber with Flattened Dispersion[J]. Acta Optica Sinica, 2011, 31(8): 806010

    [5] Wang Yuanwu, Zhang Minming, Xia Li, Liu Deming. Progress in Dispersion Control of Micro-Ring Resonator-Based Optical Frequency Comb Generation[J]. Laser & Optoelectronics Progress, 2014, 51(6): 60001

    [6] Xu Huizhen, Zhou Changjie. Highly Nonlinear All-Solid Photonic Crystal Fibers with Low Dispersion Slope[J]. Chinese Journal of Lasers, 2012, 39(11): 1106001

    [7] Zhang Shaohua, Yao Jianquan, Lu Ying, Xu Degang, Li Jinghui. Highly Nonlinear Photonic Crystal Fibers with Ultra-flattened Chromatic Dispersion and Low Confinement Loss[J]. Laser & Optoelectronics Progress, 2011, 48(12): 120605

    [8] Lin Jianqiang, Shi Zhidong, He Wei, Ji Minning. Optimization of Polarization Beat Length Stability of Rectangular Lattice Microstructure Optical Fiber[J]. Laser & Optoelectronics Progress, 2011, 48(11): 110608

    Dai Nengli, Li Yang, Peng Jinggang, Li Jinyan. Development of Dispersion-Flattened Photonic Crystal Fibers[J]. Laser & Optoelectronics Progress, 2011, 48(1): 10602
    Download Citation