• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 6, 1742007 (2017)
L. Bartolini*, F. Feroldi, J. J. A. Weda, M. Slaman, J. F. de Boer, and D. Iannuzzi
Author Affiliations
  • Department of Physics and Astronomy, Vrije Universiteit Amsterdam and LaserLab Amsterdam, de Boelelaan 1081, 1081HV Amsterdam, The Netherlands
  • show less
    DOI: 10.1142/s179354581742007x Cite this Article
    L. Bartolini, F. Feroldi, J. J. A. Weda, M. Slaman, J. F. de Boer, D. Iannuzzi. Multimodal probe for optical coherence tomography epidetection and micron-scale indentation[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742007 Copy Citation Text show less
    References

    [1] G. A. Holzapfel, R. W. Ogden , Mechanics of Biological Tissue, Springer-Verlag, Berlin (2006).

    [2] R. G. Wells , “Tissue mechanics and fibrosis,” Biochim. Biophys. Acta, Mol. Basis Dis. 1832, 884–890 (2013).

    [3] S. C. Cowin, S. B. Doty , Tissue Mechanics, Springer, New York (2007).

    [4] I. Lokody , “Microenvironment: Tumour-promoting tissue mechanics,” Nat. Rev. Cancer 14, 296–297 (2014).

    [5] M. Lekka, D. Gil, K. Pogoda, J. Dulińska-Litewka, R. Jach, J. Gostek, O. Klymenko, S. Prauzner-Bechcicki, Z. Stachura et al., “Cancer cell detection in tissue sections using AFM,” Arch. Biochem. Biophys. 518, 151–156 (2012).

    [6] G. Binnig, C. F. Quate, C. Gerber , “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).

    [7] M. L. Crichton, X. Chen, H. Huang, M. A. F. Kendall , “Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales,” Biomaterials 34, 2087–2097 (2013).

    [8] B. Pittenger, “Advances in AFM nanomechanics AFM provides high resolution mapping of various sample properties” (2013).

    [9] M. L. Oyen , “Nanoindentation of biological and biomimetic materials,” Exp. Tech. 37, 73–87 (2013).

    [10] M. L. Oyen, “Analytical techniques for indentation of viscoelastic materials,” Phil. Mag. 86, 5625–5641 (2006).

    [11] G. Mattei, G. Gruca, N. Rijnveld, A. Ahluwalia , “The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation” J. Mech. Behav. Biomed. Mater. 50, 150–159 (2015).

    [12] C.-L. Guo, N. C. Harris, S. S. Wijeratne, E. W. Frey, C.-H. Kiang , “Multiscale mechanobiology: Mechanics at the molecular, cellular, and tissue levels,” Cell Biosci. 3, 25 (2013).

    [13] P. Egan, R. Sinko, P. R. LeDuc, S. Keten , “The role of mechanics in biological and bio-inspired systems,” Nat. Commun. 6, 7418 (2015).

    [14] J. L. Katz, A. Misra, P. Spencer, Y. Wang, S. Bumrerraj, T. Nomura, S. J. Eppell, M. Tabib-Azar , “Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces,” Mater. Sci. Eng. C 27, 450–468 (2007).

    [15] J. Schmitt , “OCT elastography: Imaging microscopic deformation and strain of tissue,” Opt. Express 3, 199–211 (1998).

    [16] J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, S. G. Adie , “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 1–20 (2016).

    [17] K. V. Larin, D. D. Sampson , “Optical coherence elastography — OCT at work in tissue biomechanics [invited],” Biomed. Opt. Express 8, 1172 (2017).

    [18] S. Wang, K. V. Larin , “Optical coherence elastography for tissue characterization: A review,” J. Biophoton. 9999, 1–24 (2014).

    [19] B. F. Kennedy, K. M. Kennedy, D. D. Sampson , “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 272–288 (2014).

    [20] B. F. Kennedy, P. Wijesinghe, D. D. Sampson , “The emergence of optical elastography in biomedicine,” Nat. Photon. 11, 215–221 (2017).

    [21] B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, D. D. Sampson , “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5, 2113 (2014).

    [22] K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, B. F. Kennedy , “Quantitative micro-elastography: Imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).

    [23] L. Chin, B. F. Kennedy, K. M. Kennedy, P. Wijesinghe, G. J. Pinniger, J. R. Terrill, R. A. McLaughlin, D. D. Sampson , “Three-dimensional optical coherence micro-elastography of skeletal muscle tissue,” Biomed. Opt. Express 5, 3090–3102 (2014).

    [24] S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, B. F. Kennedy , “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8, 2458 (2017).

    [25] K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, D. D. Sampson , “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett. 37, 2310 (2012).

    [26] K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, D. D. Sampson , “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18, 121510 (2013).

    [27] Y. Qiu, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. J. Pfister, X. Liu , “Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties,” Biomed. Opt. Express 7, 688–700 (2016).

    [28] D. Chavan, T. C. van de Watering, G. Gruca, J. H. Rector, K. Heeck, M. Slaman, D. Iannuzzi , “Ferrule-top nanoindenter: An optomechanical fiber sensor for nanoindentation,” Rev. Sci. Instrum. 83, 115110 (2012).

    [29] H. van Hoorn, N. A. Kurniawan, G. H. Koenderink, D. Iannuzzi , “Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation,” Soft Matter 12, 3066–3073 (2016).

    [30] S. V. Beekmans, D. Iannuzzi , “Characterizing tissue stiffness at the tip of a rigid needle using an opto-mechanical force sensor,” Biomed. Microdevices 18, 1–8 (2016).

    [31] E. J. Bos, K. van der Laan, M. N. Helder, M. G. Mullender, D. Iannuzzi, P. P. van Zuijlen , “Noninvasive measurement of ear cartilage elasticity on the cellular level: A new method to provide biomechanical information for tissue engineering,” Plast. Reconstr. Sur. Glob. Open 5, e1147 (2017).

    [32] C. Lavet, P. Ammann , “Osteoarthritis like alteration of cartilage and subchondral bone induced by protein malnutrition is treated by nutritional essential amino acids supplements,” Osteoarthr. Cartilage 25, S 293 (2017).

    [33] B. Sarker, R. Singh, T. Zehnder, T. Forgber, C. Alexiou, I. Cicha, R. Detsch, A. R. Boccaccini , “Bioactive and compatible polymers macromolecular interactions in alginate–gelatin hydrogels regulate the behavior of human fibroblasts,” J. Bioact. Compat. Polym. 32, 309–324 (2017).

    [34] P. R. Moshtagh, B. Pouran, N. M. Korthagen, A. A. Zadpoor, H. Weinans , “Guidelines for an optimized indentation protocol for measurement of cartilage stiffness: The effects of spatial variation and indentation parameters,” J. Biomech. 49, 3602–3607 (2016).

    [35] M. Vashaghian, A. M. Ruiz-Zapata, M. H. Kerkhof, B. Zandieh-Doulabi, A. Werner, J. P. Roovers, T. H. Smit , “Toward a new generation of pelvic floor implants with electrospun nanofibrous matrices: A feasibility study,” Neurourol. Urodyn. 36, 565–573 (2017).

    [36] W. E. G. Müller, E. Tolba, H. C. Schroder, S. Wang, G. Glaber, R. Munoz-Espí, T. Link, X. Wang , “A new polyphosphate calcium material with morphogenetic activity,” Mater. Lett. 148, 163–166 (2015).

    [37] S. Wang, X. Wang, F. G. Draenert, O. Albert, H. C. Schroder, V. Mailqnder, G. Mitov, W. E. G. Müller , “Bioactive and biodegradable silica biomaterial for bone regeneration,” Bone 67, 292–304 (2014).

    [38] M. Neufurth, X. Wang, H. C. Schroder, Q. Feng, B. Diehl-Seifert, T. Ziebart, R. Steffen, S. Wang, W. E. G. Müller , “Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells,” Biomaterials 35, 8810–8819 (2014).

    [39] D. Chavan, J. Mo, M. de Groot, A. Meijering, J. F. de Boer, D. Iannuzzi , “Collecting optical coherence elastography depth profiles with a micromachined cantilever probe,” Opt. Lett. 38, 1476–1478 (2013).

    [40] Y. Yang, P. O. Bagnaninchi, M. Ahearne, R. K. Wang, K.-K. Liu , “A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels,” J. R. Soc. Interface 4, 1169–1173 (2007).

    [41] J. Li, M. de Groot, F. Helderman, J. Mo, J. M. A. Daniels, K. Grünberg, T. G. Sutedja, J. F. de Boer , “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express 20, 24132 (2012).

    [42] J. Li, F. Feroldi, J. de Lange, J. M. A. Daniels, K. Grünberg, J. F. de Boer , “Polarization sensitive optical frequency domain imaging system for endobronchial imaging,” Opt. Express 23, 3390 (2015).

    [43] S. V. Beekmans, D. Iannuzzi , “A metrological approach for the calibration of force transducers with interferometric readout,” Surf. Topogr. Metrol. Prop. 3, 1–12 (2015).

    [44] S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, S. Sriram , “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).

    L. Bartolini, F. Feroldi, J. J. A. Weda, M. Slaman, J. F. de Boer, D. Iannuzzi. Multimodal probe for optical coherence tomography epidetection and micron-scale indentation[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742007
    Download Citation