• Photonics Research
  • Vol. 8, Issue 5, 637 (2020)
Xiang Li1、†, Jingrou Tan1、†, Kaimin Zheng2、†, Labao Zhang1、4、*, Lijian Zhang2、5、*, Weiji He3, Pengwei Huang3, Haochen Li1, Biao Zhang1, Qi Chen1, Rui Ge1, Shuya Guo1, Tao Huang1, Xiaoqing Jia1, Qingyuan Zhao1, Xuecou Tu1, Lin Kang1, Jian Chen1, and Peiheng Wu1
Author Affiliations
  • 1School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
  • 2College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
  • 3Jiangsu Key Laboratory of Spectral Imaging and Intelligence Sense, Nanjing University of Science and Technology, Nanjing 210094, China
  • 4e-mail: Lzhang@nju.edu.cn
  • 5e-mail: lijian.zhang@nju.edu.cn
  • show less
    DOI: 10.1364/PRJ.377900 Cite this Article Set citation alerts
    Xiang Li, Jingrou Tan, Kaimin Zheng, Labao Zhang, Lijian Zhang, Weiji He, Pengwei Huang, Haochen Li, Biao Zhang, Qi Chen, Rui Ge, Shuya Guo, Tao Huang, Xiaoqing Jia, Qingyuan Zhao, Xuecou Tu, Lin Kang, Jian Chen, Peiheng Wu. Enhanced photon communication through Bayesian estimation with an SNSPD array[J]. Photonics Research, 2020, 8(5): 637 Copy Citation Text show less
    References

    [1] H. Henniger, O. Wilfert. An introduction to free-space optical communications. Radioengineering, 19, 203-212(2010).

    [2] M. A. Khalighi, M. Uysal. Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tuts., 16, 2231-2258(2014).

    [3] H. Hemmati. Interplanetary laser communications and precision ranging. Laser Photon. Rev., 5, 697-710(2011).

    [4] B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, R. Czichy. 5.6 Gbps optical intersatellite communication links. Proc. SPIE, 7199, 719906(2009).

    [5] D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas. Overview and status of the lunar laser communications demonstration. Proc. SPIE, 8246, 82460C(2012).

    [6] D. M. Boroson, B. S. Robinson. The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions. Space Sci. Rev., 185, 115-128(2014).

    [7] S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, B. S. Robinson. Design of a high-speed space modem for the lunar laser communications demonstration. Proc. SPIE, 7923, 792308(2011).

    [8] Q. Sun, W. D. Zhan, Z. Q. Hao, Y. F. Tang, J. R. Wang. Power budget of earth to moon deep space communication system. International Conference on Computer Systems, Electronics and Control (ICCSEC), 578-581(2017).

    [9] M. A. Albota, B. S. Robinson. Photon-counting 1.55 μm optical communications with pulse-position modulation and a multimode upconversion single-photon receiver. Opt. Lett., 35, 2627-2629(2010).

    [10] D. Chitnis, S. Collins. A spad-based photon detecting system for optical communications. J. Lightwave Technol., 32, 2028-2034(2014).

    [11] B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, K. K. Berggren. 781 Mbit/s photon-counting optical communications using a superconducting nanowire detector. Opt. Lett., 31, 444-446(2006).

    [12] F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Y. Zhao, K. K. Berggren. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications. Opt. Express, 24, 3248-3257(2016).

    [13] X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, P. H. Wu. Model of bit error rate for laser communication based on superconducting nanowire single photon detector. Acta Phys. Sin., 66, 198501(2017).

    [14] B. Li, Y. T. Liu, S. F. Tong, L. Zhang, H. F. Yao. BER analysis of a deep space optical communication system based on SNSPD over double generalized gamma channel. IEEE Photon. J., 10, 7907607(2018).

    [15] A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, B. Voronov. Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett., 88, 111116(2006).

    [16] A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, A. Fiore. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photonics, 2, 302-306(2008).

    [17] S. Jahanmirinejad, A. Fiore. Proposal for a superconducting photon number resolving detector with large dynamic range. Opt. Express, 20, 5017-5028(2012).

    [18] D. Rosenberg, A. J. Kerman, R. J. Molnar, E. A. Dauler. High-speed and high-efficiency superconducting nanowire single photon detector array. Opt. Express, 21, 1440-1447(2013).

    [19] R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, W. Chen. Photon-number-resolving detector based on superconducting serial nanowires. IEEE Trans. Appl. Supercond., 23, 2200309(2012).

    [20] M. J. Fitch, B. C. Jacobs, T. B. Pittman, J. D. Franson. Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A, 68, 043814(2003).

    [21] S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, H. Terai. Superconducting coincidence photon detector with short timing jitter. Appl. Phys. Lett., 112, 262601(2018).

    [22] D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, K. K. Berggren. A scalable multi-photon coincidence detector based on superconducting nanowires. Nat. Nanotechnol., 13, 596-601(2018).

    [23] S. Olivares, M. G. A. Paris. Bayesian estimation in homodyne interferometry. J. Phys. B-at Mol. Opt., 42, 055506(2009).

    [24] N. Wiebe, C. Granade. Efficient Bayesian phase estimation. Phys. Rev. Lett., 117, 010503(2016).

    [25] J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, M. G. Thompson. Experimental quantum Hamiltonian learning. Nat. Phys., 13, 551-555(2017).

    [26] A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, U. L. Andersen. Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nat. Photonics, 9, 577-581(2015).

    [27] S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, M. G. Thompson. Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett., 118, 100503(2017).

    CLP Journals

    [1] Chen Wei, Wencong Wang, Dongmei Liu, Min Gu, Xianqiu Wu. High-efficiency and large light-receiving area superconducting nanowire single-photon detector integrated with high-contrast grating[J]. Photonics Research, 2021, 9(11): 2253

    Xiang Li, Jingrou Tan, Kaimin Zheng, Labao Zhang, Lijian Zhang, Weiji He, Pengwei Huang, Haochen Li, Biao Zhang, Qi Chen, Rui Ge, Shuya Guo, Tao Huang, Xiaoqing Jia, Qingyuan Zhao, Xuecou Tu, Lin Kang, Jian Chen, Peiheng Wu. Enhanced photon communication through Bayesian estimation with an SNSPD array[J]. Photonics Research, 2020, 8(5): 637
    Download Citation