• Infrared and Laser Engineering
  • Vol. 53, Issue 10, 20240234 (2024)
Meng ZHANG, Shaozhi PU, Mingxin DU, Ying SUN..., Xiaomeng WANG and Ying LIANG|Show fewer author(s)
Author Affiliations
  • School of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China
  • show less
    DOI: 10.3788/IRLA20240234 Cite this Article
    Meng ZHANG, Shaozhi PU, Mingxin DU, Ying SUN, Xiaomeng WANG, Ying LIANG. (1+2)-dimensional spatial solitons in liquid crystals with competing nonlinearities[J]. Infrared and Laser Engineering, 2024, 53(10): 20240234 Copy Citation Text show less
    The variation of critical power \begin{document}${p_c}$\end{document} of optical solitons with the degree of thermal nonlocality \begin{document}${\sigma _2}$\end{document}. (a) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}$ \gamma $\end{document}=0.1; (b) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}$ \gamma $\end{document}=0.2; (c) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}$ \gamma $\end{document}=0.1; (d) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}$ \gamma $\end{document}=0.2
    Fig. 1. The variation of critical power Unknown environment 'document' of optical solitons with the degree of thermal nonlocality Unknown environment 'document'. (a) Unknown environment 'document'=3, Unknown environment 'document'=0.1; (b) Unknown environment 'document'=3, Unknown environment 'document'=0.2; (c) Unknown environment 'document'=4, Unknown environment 'document'=0.1; (d) Unknown environment 'document'=4, Unknown environment 'document'=0.2
    The variation of critical power \begin{document}${p_c}$\end{document} of optical solitons with the degree of reorientation non-locality \begin{document}${\sigma _1}$\end{document}. (a) \begin{document}${\sigma _2}$\end{document}=8, \begin{document}$ \gamma $\end{document}=0.1; (b) \begin{document}${\sigma _2}$\end{document}=8, \begin{document}$ \gamma $\end{document}=0.2; (c) \begin{document}${\sigma _2}$\end{document}=9, \begin{document}$ \gamma $\end{document}=0.1; (d) \begin{document}${\sigma _2}$\end{document}=9, \begin{document}$ \gamma $\end{document}=0.2
    Fig. 2. The variation of critical power Unknown environment 'document' of optical solitons with the degree of reorientation non-locality Unknown environment 'document'. (a) Unknown environment 'document'=8, Unknown environment 'document'=0.1; (b) Unknown environment 'document'=8, Unknown environment 'document'=0.2; (c) Unknown environment 'document'=9, Unknown environment 'document'=0.1; (d) Unknown environment 'document'=9, Unknown environment 'document'=0.2
    The variation of critical power \begin{document}${p_c}$\end{document} of optical solitons with the thermal nonlinearity coefficient \begin{document}$\gamma $\end{document}. (a) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}${\sigma _2}$\end{document}=8; (b) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}${\sigma _2}$\end{document}=9; (c) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=8; (d) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=9
    Fig. 3. The variation of critical power Unknown environment 'document' of optical solitons with the thermal nonlinearity coefficient Unknown environment 'document'. (a) Unknown environment 'document'=3, Unknown environment 'document'=8; (b) Unknown environment 'document'=3, Unknown environment 'document'=9; (c) Unknown environment 'document'=4, Unknown environment 'document'=8; (d) Unknown environment 'document'=4, Unknown environment 'document'=9
    Intensity distribution of the Gaussian beam at several different propagation distances. (a1)-(a4) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}${\sigma _2}$\end{document}=8, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}$ {p_{c + }} $\end{document}=624.6, \begin{document}${p_{c - }}$\end{document}=27; (b1)-(b4) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}${\sigma _2}$\end{document}=9, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}$ {p_{c + }} $\end{document}=921.6, \begin{document}${p_{c - }}$\end{document}=239.5; (c1)- (c4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=9, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}$ {p_c} $\end{document}=540; (d1)-(d4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=8, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}$ {p_c} $\end{document}=411.5
    Fig. 4. Intensity distribution of the Gaussian beam at several different propagation distances. (a1)-(a4) Unknown environment 'document'=3, Unknown environment 'document'=8, Unknown environment 'document'=0.2, Unknown environment 'document'=624.6, Unknown environment 'document'=27; (b1)-(b4) Unknown environment 'document'=3, Unknown environment 'document'=9, Unknown environment 'document'=0.2, Unknown environment 'document'=921.6, Unknown environment 'document'=239.5; (c1)- (c4) Unknown environment 'document'=4, Unknown environment 'document'=9, Unknown environment 'document'=0.2, Unknown environment 'document'=540; (d1)-(d4) Unknown environment 'document'=4, Unknown environment 'document'=8, Unknown environment 'document'=0.2, Unknown environment 'document'=411.5
    The variation of critical power \begin{document}${p_c}$\end{document} of dipole solitons with the degree of thermal nonlocality \begin{document}${\sigma _2}$\end{document}. (a) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}$ \gamma $\end{document}=0.05; (b) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}$ \gamma $\end{document}=0.05; (c) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}$ \gamma $\end{document}=0.1; (d) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}$ \gamma $\end{document}=0.1
    Fig. 5. The variation of critical power Unknown environment 'document' of dipole solitons with the degree of thermal nonlocality Unknown environment 'document'. (a) Unknown environment 'document'=4, Unknown environment 'document'=0.05; (b) Unknown environment 'document'=5, Unknown environment 'document'=0.05; (c) Unknown environment 'document'=4, Unknown environment 'document'=0.1; (d) Unknown environment 'document'=5, Unknown environment 'document'=0.1
    The variation of critical power \begin{document}${p_c}$\end{document} of dipole solitons with the degree of reorientation non-locality \begin{document}${\sigma _1}$\end{document}. (a) \begin{document}${\sigma _2}$\end{document}=11, \begin{document}$ \gamma $\end{document}=0.05; (b) \begin{document}${\sigma _2}$\end{document}=12, \begin{document}$ \gamma $\end{document}=0.05; (c) \begin{document}${\sigma _2}$\end{document}=11, \begin{document}$ \gamma $\end{document}=0.1; (d) \begin{document}${\sigma _2}$\end{document}=12, \begin{document}$ \gamma $\end{document}=0.1
    Fig. 6. The variation of critical power Unknown environment 'document' of dipole solitons with the degree of reorientation non-locality Unknown environment 'document'. (a) Unknown environment 'document'=11, Unknown environment 'document'=0.05; (b) Unknown environment 'document'=12, Unknown environment 'document'=0.05; (c) Unknown environment 'document'=11, Unknown environment 'document'=0.1; (d) Unknown environment 'document'=12, Unknown environment 'document'=0.1
    The variation of critical power \begin{document}${p_c}$\end{document} of dipole solitons with the thermal nonlinearity coefficient \begin{document}$\gamma $\end{document}. (a) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=11; (b) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=12; (c) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}${\sigma _2}$\end{document}=11; (d) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}${\sigma _2}$\end{document}=12
    Fig. 7. The variation of critical power Unknown environment 'document' of dipole solitons with the thermal nonlinearity coefficient Unknown environment 'document'. (a) Unknown environment 'document'=4, Unknown environment 'document'=11; (b) Unknown environment 'document'=4, Unknown environment 'document'=12; (c) Unknown environment 'document'=5, Unknown environment 'document'=11; (d) Unknown environment 'document'=5, Unknown environment 'document'=12
    Intensity distribution of the dipole solitons at several different propagation distances. (a1)-(a4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=11, \begin{document}$ \gamma $\end{document}=0.1, \begin{document}$ {p_{c + }} $\end{document}=2592, \begin{document}${p_{c - }}$\end{document}=816.8; (b1)-(b4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=11, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}${p_c}$\end{document}=852.1; (c1)-(c4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=12, \begin{document}$ \gamma $\end{document}=0.05, \begin{document}$ {p_{c + }} $\end{document}=7 564, \begin{document}${p_{c - }}$\end{document}=676.6; (d1)-(d4) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}${\sigma _2}$\end{document}=12, \begin{document}$ \gamma $\end{document}=0.1, \begin{document}${p_c}$\end{document}=1 596
    Fig. 8. Intensity distribution of the dipole solitons at several different propagation distances. (a1)-(a4) Unknown environment 'document'=4, Unknown environment 'document'=11, Unknown environment 'document'=0.1, Unknown environment 'document'=2592, Unknown environment 'document'=816.8; (b1)-(b4) Unknown environment 'document'=4, Unknown environment 'document'=11, Unknown environment 'document'=0.2, Unknown environment 'document'=852.1; (c1)-(c4) Unknown environment 'document'=4, Unknown environment 'document'=12, Unknown environment 'document'=0.05, Unknown environment 'document'=7 564, Unknown environment 'document'=676.6; (d1)-(d4) Unknown environment 'document'=5, Unknown environment 'document'=12, Unknown environment 'document'=0.1, Unknown environment 'document'=1 596
    Meng ZHANG, Shaozhi PU, Mingxin DU, Ying SUN, Xiaomeng WANG, Ying LIANG. (1+2)-dimensional spatial solitons in liquid crystals with competing nonlinearities[J]. Infrared and Laser Engineering, 2024, 53(10): 20240234
    Download Citation