• Acta Optica Sinica
  • Vol. 41, Issue 10, 1002002 (2021)
Jiaqi Yang1、**, Jiadong Liu1、2, and Tao Liu1、2、*
Author Affiliations
  • 1Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China
  • 2Science and Technology on Particle Transport and Separation Laboratory, Tianjin 300180, China
  • show less
    DOI: 10.3788/AOS202141.1002002 Cite this Article Set citation alerts
    Jiaqi Yang, Jiadong Liu, Tao Liu. Influence of Ground State Hyperfine Pumping on Light-Induced Drift Velocity of Atoms[J]. Acta Optica Sinica, 2021, 41(10): 1002002 Copy Citation Text show less
    Energy level diagram of 85Rb
    Fig. 1. Energy level diagram of 85Rb
    Energy level diagram of 87Rb
    Fig. 2. Energy level diagram of 87Rb
    Simplified energy level structure of atoms
    Fig. 3. Simplified energy level structure of atoms
    Drift velocity of 85Rb or 87Rb versus excitation laser frequency detuning when I0=10 W·cm-2 and Δf=50 MHz
    Fig. 4. Drift velocity of 85Rb or 87Rb versus excitation laser frequency detuning when I0=10 W·cm-2 and Δf=50 MHz
    Atomic population at each energy level of 85Rb versus laser frequency detuning when I0=10 W·cm-2 and Δf=50 MHz
    Fig. 5. Atomic population at each energy level of 85Rb versus laser frequency detuning when I0=10 W·cm-2 and Δf=50 MHz
    Drift velocity versus laser frequency detuning under different ground state hyperfine splitting energy differences when I0=10 W·cm-2 and Δf=50 MHz. (a) 1 GHz; (b) 2 GHz; (c) 3 GHz; (d) 4 GHz
    Fig. 6. Drift velocity versus laser frequency detuning under different ground state hyperfine splitting energy differences when I0=10 W·cm-2 and Δf=50 MHz. (a) 1 GHz; (b) 2 GHz; (c) 3 GHz; (d) 4 GHz
    Drift velocity versus laser frequency detuning under different laser power densities when Δf=50 MHz
    Fig. 7. Drift velocity versus laser frequency detuning under different laser power densities when Δf=50 MHz
    Drift velocity versus laser frequency detuning at different laser linewidths when I0=10 W·cm-2. (a) 5 MHz; (b) 100 MHz; (c) 1 GHz; (d) 1.5 GHz; (e) 2 GHz; (f) 4 GHz
    Fig. 8. Drift velocity versus laser frequency detuning at different laser linewidths when I0=10 W·cm-2. (a) 5 MHz; (b) 100 MHz; (c) 1 GHz; (d) 1.5 GHz; (e) 2 GHz; (f) 4 GHz
    Light-induced drift velocity versus laser frequency detuning under different types of lasers when Δf=50 MHz. (a) Single laser, I0= 10 W·cm-2; (b) two lasers, I0= 0.1 W·cm-2; (c) two lasers, I0= 1 W·cm-2; (d) two lasers, I0= 5 W·cm-2
    Fig. 9. Light-induced drift velocity versus laser frequency detuning under different types of lasers when Δf=50 MHz. (a) Single laser, I0= 10 W·cm-2; (b) two lasers, I0= 0.1 W·cm-2; (c) two lasers, I0= 1 W·cm-2; (d) two lasers, I0= 5 W·cm-2
    Laser conditionn1/i=1,2,3nin2/i=1,2,3nin3/i=1,2,3ni
    Single laser with power density of 10 W·cm-2/%93.03.63.4
    Two lasers with each laser power density of 0.1 W·cm-2 /%27.366.36.4
    Table 1.

    ni/i=1,2,3niat maximum drift velocity

    Jiaqi Yang, Jiadong Liu, Tao Liu. Influence of Ground State Hyperfine Pumping on Light-Induced Drift Velocity of Atoms[J]. Acta Optica Sinica, 2021, 41(10): 1002002
    Download Citation