• Advanced Photonics
  • Vol. 1, Issue 3, 036001 (2019)
Chunqi Jin1、2、3, Mina Afsharnia1, René Berlich4, Stefan Fasold1, Chengjun Zou1, Dennis Arslan1, Isabelle Staude1, Thomas Pertsch1、4, and Frank Setzpfandt1、*
Author Affiliations
  • 1Friedrich Schiller University Jena, Institute of Applied Physics, Abbe Center of Photonics, Jena, Germany
  • 2Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun, China
  • 3University of the Chinese Academy of Sciences, Beijing, China
  • 4Fraunhofer Institute for Applied Optics and Precision Engineering, Jena, Germany
  • show less
    DOI: 10.1117/1.AP.1.3.036001 Cite this Article Set citation alerts
    Chunqi Jin, Mina Afsharnia, René Berlich, Stefan Fasold, Chengjun Zou, Dennis Arslan, Isabelle Staude, Thomas Pertsch, Frank Setzpfandt. Dielectric metasurfaces for distance measurements and three-dimensional imaging[J]. Advanced Photonics, 2019, 1(3): 036001 Copy Citation Text show less
    References

    [1] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [2] M. Decker, I. Staude. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt., 18, 103001(2016).

    [3] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [4] S. M. Kamali et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

    [5] N. Meinzer, W. L. Barnes, I. R. Hooper. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 8, 889-898(2014).

    [6] K. E. Chong et al. Efficient polarization-insensitive complex wavefront control using Huygens? Metasurfaces based on dielectric resonant meta-atoms. ACS Photonics, 3, 514-519(2016).

    [7] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [8] L. Wang et al. Grayscale transparent metasurface holograms. Optica, 3, 1504-1505(2016).

    [9] B. Wang et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett., 16, 5235-5240(2016).

    [10] L. Jin et al. Noninterleaved metasurface for (26-1) spin-and wavelength-encoded holograms. Nano Lett., 18, 8016-8024(2018).

    [11] Y. Yang et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

    [12] K. E. Chong et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett., 15, 5369-5374(2015).

    [13] T. Stav et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101-1104(2018).

    [14] M. Khorasaninejad et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett., 15, 5358-5362(2015).

    [15] A. Arbabi et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt. Express, 23, 33310-33317(2015).

    [16] E. Arbabi et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3, 628-633(2016).

    [17] E. Arbabi et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Opt. Express, 24, 18468-18477(2016).

    [18] A. Zhan et al. Low-contrast dielectric metasurface optics. ACS Photonics, 3, 209-214(2016).

    [19] M. P. Backlund et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat. Photonics, 10, 459-462(2016).

    [20] H. Zuo et al. High-efficiency all-dielectric metalenses for mid-infrared imaging. Adv. Opt. Mater., 5, 1700585(2017).

    [21] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [22] M. M. Shanei et al. Dielectric metalenses with engineered point spread function. Appl. Opt., 56, 8917-8923(2017).

    [23] R. Paniagua-Dominguez et al. A metalens with a near-unity numerical aperture. Nano Lett., 18, 2124-2132(2018).

    [24] S. M. Kamali et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun., 7, 11618(2016).

    [25] S. M. Kamali et al. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev., 10, 1002-1008(2016).

    [26] E. Arbabi et al. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [27] B. Cyganek, J. P. Siebert. An Introduction to 3D Computer Vision Techniques and Algorithms(2011).

    [28] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics, 3, 128-160(2011).

    [29] H. Kwon et al. Computational complex optical field imaging using a designed metasurface diffuser. Optica, 5, 924-931(2018).

    [30] Z. Yang et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun., 9, 4607(2018).

    [31] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [32] A. Greengard, Y. Y. Schechner, R. Piestun. Depth from diffracted rotation. Opt. Lett., 31, 181-183(2006).

    [33] S. Quirin, R. Piestun. Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions. Appl. Opt., 52, A367-A376(2013).

    [34] S. R. P. Pavani, A. Greengard, R. Piestun. Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system. Appl. Phys. Lett., 95, 021103(2009).

    [35] S. R. P. Pavani, J. G. DeLuca, R. Piestun. Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system. Opt. Express, 17, 19644-19655(2009).

    [36] S. R. P. Pavani et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. U.S.A., 106, 2995-2999(2009).

    [37] R. Berlich, A. Bräuer, S. Stallinga. Single shot three-dimensional imaging using an engineered point spread function. Opt. Express, 24, 5946-5960(2016).

    [38] R. Berlich, S. Stallinga. High-order-helix point spread functions for monocular three-dimensional imaging with superior aberration robustness. Opt. Express, 26, 4873-4891(2018).

    [39] S. Jeon et al. Three-dimensional nanofabrication with rubber stamps and conformable photomasks. Adv. Mater., 16, 1369-1373(2004).

    [40] B. Walther et al. Spatial and spectral light shaping with metamaterials. Adv. Mater., 24, 6300-6304(2012).

    [41] M. Khorasaninejad et al. Multispectral chiral imaging with a metalens. Nano Lett., 16, 4595-4600(2016).

    [42] K. Wang et al. Quantum metasurface for multiphoton interference and state reconstruction. Science, 361, 1104-1108(2018).

    [43] M. Decker et al. High-efficiency dielectric Huygens surfaces. Adv. Opt. Mater., 3, 813-820(2015).

    [44] Z. Dong et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett., 17, 7620-7628(2017).

    [45] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [46] M. I. Shalaev et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett., 15, 6261-6266(2015).

    [47] Y. F. Yu et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev., 9, 412-418(2015).

    [48] A. J. Ollanik et al. High-efficiency all-dielectric Huygens metasurfaces from the ultraviolet to the infrared. ACS Photonics, 5, 1351-1358(2018).

    [49] P. Lalanne, P. Chavel. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev., 11, 1600295(2017).

    [50] D. Arslan et al. Angle-selective all-dielectric Huygens’ metasurfaces. J. Phys. D Appl. Phys., 50, 434002(2017).

    [51] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    CLP Journals

    [1] Jie Dai, Lihua Huang, Kai Guo, Liqing Ling, Huijie Huang. Reflectance transformation imaging of 3D detection for subtle traces[J]. Chinese Optics Letters, 2021, 19(3): 031101

    Chunqi Jin, Mina Afsharnia, René Berlich, Stefan Fasold, Chengjun Zou, Dennis Arslan, Isabelle Staude, Thomas Pertsch, Frank Setzpfandt. Dielectric metasurfaces for distance measurements and three-dimensional imaging[J]. Advanced Photonics, 2019, 1(3): 036001
    Download Citation