• Advanced Photonics
  • Vol. 1, Issue 3, 036001 (2019)
Chunqi Jin1、2、3, Mina Afsharnia1, René Berlich4, Stefan Fasold1, Chengjun Zou1, Dennis Arslan1, Isabelle Staude1, Thomas Pertsch1、4, and Frank Setzpfandt1、*
Author Affiliations
  • 1Friedrich Schiller University Jena, Institute of Applied Physics, Abbe Center of Photonics, Jena, Germany
  • 2Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun, China
  • 3University of the Chinese Academy of Sciences, Beijing, China
  • 4Fraunhofer Institute for Applied Optics and Precision Engineering, Jena, Germany
  • show less
    DOI: 10.1117/1.AP.1.3.036001 Cite this Article Set citation alerts
    Chunqi Jin, Mina Afsharnia, René Berlich, Stefan Fasold, Chengjun Zou, Dennis Arslan, Isabelle Staude, Thomas Pertsch, Frank Setzpfandt. Dielectric metasurfaces for distance measurements and three-dimensional imaging[J]. Advanced Photonics, 2019, 1(3): 036001 Copy Citation Text show less
    (a) Scheme showing the creation of a DH-PSF by using a phase mask with the phase profile shown in (b). (c) Intensity distribution in the image plane of the lens for different distances between the point light source and the phase mask.
    Fig. 1. (a) Scheme showing the creation of a DH-PSF by using a phase mask with the phase profile shown in (b). (c) Intensity distribution in the image plane of the lens for different distances between the point light source and the phase mask.
    Phase profiles for realizing a DH-PSF with (a) 4 and (b) 10 evenly spaced phase steps. (c) Intensity profile of ideal DH-PSF, where the main parameters are indicated. (d)–(g) Comparison of parameters of ideal and discretized PSFs dependent on the distance D between the point light source and the phase mask. The plots show the difference between the values for ideal and discretized realizations for (d) the rotation angle Θ, (e) the distance L, (f) the horizontal width Δx, and (g) the vertical width Δy.
    Fig. 2. Phase profiles for realizing a DH-PSF with (a) 4 and (b) 10 evenly spaced phase steps. (c) Intensity profile of ideal DH-PSF, where the main parameters are indicated. (d)–(g) Comparison of parameters of ideal and discretized PSFs dependent on the distance D between the point light source and the phase mask. The plots show the difference between the values for ideal and discretized realizations for (d) the rotation angle Θ, (e) the distance L, (f) the horizontal width Δx, and (g) the vertical width Δy.
    (a) Sketch of the considered geometry of the metasurface consisting of silicon nanodisks embedded in a medium with a refractive index of n=1.45. Numerical calculations of (b) the transmittance intensity and (c) phase of silicon nanodisk arrays with varying radius and lattice periodicity. The operation wavelength is 1500 nm. (d), (e) Transmission phase of metasurfaces with parameters along the white dashed lines in (b) and (c).
    Fig. 3. (a) Sketch of the considered geometry of the metasurface consisting of silicon nanodisks embedded in a medium with a refractive index of n=1.45. Numerical calculations of (b) the transmittance intensity and (c) phase of silicon nanodisk arrays with varying radius and lattice periodicity. The operation wavelength is 1500 nm. (d), (e) Transmission phase of metasurfaces with parameters along the white dashed lines in (b) and (c).
    (a) SEM image of realized silicon metasurface before covering with spin-on-glass. The scale bar is 2 μm. (b) Photograph of the finished sample with the 16 fabricated phase masks of 1-cm diameter. (c) Measured phase profile in the center of a phase mask with 10 phase levels.
    Fig. 4. (a) SEM image of realized silicon metasurface before covering with spin-on-glass. The scale bar is 2  μm. (b) Photograph of the finished sample with the 16 fabricated phase masks of 1-cm diameter. (c) Measured phase profile in the center of a phase mask with 10 phase levels.
    (a) Measured DH-PSF. (b) Rotation angle of the DH-PSF in dependence on the source-sample distance D, the insets show two specific orientations of the DH-PSF. (c) Photograph of a 3-D scene. (d) Raw image that was taken using the phase mask and (e) retrieved depth information.
    Fig. 5. (a) Measured DH-PSF. (b) Rotation angle of the DH-PSF in dependence on the source-sample distance D, the insets show two specific orientations of the DH-PSF. (c) Photograph of a 3-D scene. (d) Raw image that was taken using the phase mask and (e) retrieved depth information.
    Chunqi Jin, Mina Afsharnia, René Berlich, Stefan Fasold, Chengjun Zou, Dennis Arslan, Isabelle Staude, Thomas Pertsch, Frank Setzpfandt. Dielectric metasurfaces for distance measurements and three-dimensional imaging[J]. Advanced Photonics, 2019, 1(3): 036001
    Download Citation