[1] N F Yu, F Aieta, P Genevet et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett, 12, 6328-6333(2012).
[2] G Y Lee, G Yoon, S Y Lee et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 10, 4237-4245(2018).
[3] K Zhang, Y Y Yuan, D W Zhang et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt Express, 26, 1351-1360(2018).
[4] E Maguid, I Yulevich, M Yannai et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci Appl, 6, e17027(2017).
[5] E Almeida, G Shalem, Y Prior. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat Commun, 7, 10367(2016).
[6] R A Shelby, D R Smith, S Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).
[7] H C Chu, Q Li, B B Liu et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci Appl, 7, 50(2018).
[8] Y J Liu, Q Z Hao, J S T Smalley et al. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Appl Phys Lett, 97, 091101(2010).
[9] Z Bomzon, G Biener, V Kleiner et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett, 27, 1141-1143(2022).
[10] S L Sun, Q He, S Y Xiao et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater, 11, 426-431(2012).
[11] S L Sun, K Y Yang, C M Wang et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett, 12, 6223-6229(2012).
[12] X Xie, M B Pu, K P Liu et al. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror. Adv Mater Technol, 4, 1900334(2019).
[13] M Hu, J Y Chen, Z Y Li et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev, 35, 1084-1094(2006).
[14] Y J Liu, G Y Si, E S P Leong et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater, 24, OP131-OP135(2012).
[15] Y G Chen, T S Kao, B Ng et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt Express, 21, 13691-13698(2013).
[16] P P Iyer, N A Butakov, J A Schuller. Reconfigurable semiconductor phased-array metasurfaces. ACS Photonics, 2, 1077-1084(2015).
[17] A Komar, Z Fang, J Bohn et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl Phys Lett, 110, 071109(2017).
[18] P C Wu, R A Pala, G K Shirmanesh et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces. Nat Commun, 10, 3654(2019).
[19] C J Zou, A Komar, S Fasold et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces. ACS Photonics, 6, 1533-1540(2019).
[20] C Yan, K Y Yang, O J F Martin. Fano-resonance-assisted metasurface for color routing. Light Sci Appl, 6, e17017(2017).
[21] C T Wang, H H Hou, P C Chang et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating. Opt Express, 24, 22892-22898(2016).
[22] G X Zheng, H Mühlenbernd, M Kenney et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol, 10, 308-312(2015).
[23] P Berini. Optical beam steering using tunable metasurfaces. ACS Photonics, 9, 2204-2218(2022).
[24] M K Chen, Y F Wu, L Feng et al. Principles, functions, and applications of optical meta-lens. Adv Opt Mater, 9, 2001414(2021).
[25] M Decker, C Kremers, A Minovich et al. Electro-optical switching by liquid-crystal controlled metasurfaces. Opt Express, 21, 8879-8885(2013).
[26] O Buchnev, N Podoliak, M Kaczmarek et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv Opt Mater, 3, 674-679(2015).
[27] D C Wang, L C Zhang, Y H Gu et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci Rep, 5, 15020(2015).
[28] S Colburn, A Zhan, A Majumdar. Metasurface optics for full-color computational imaging. Sci Adv, 4, eaar2114(2018).
[29] J Kim, D Jeon, J Seong et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano, 16, 3546-3553(2022).
[30] A Nemati, Q Wang, M H Hong et al. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv, 1, 180009(2018).
[31] K Du, H Barkaoui, X D Zhang et al. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics, 11, 1761-1781(2022).
[32] W T Chen, K Y Yang, C M Wang et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett, 14, 225-230(2014).
[33] D D Wen, F Y Yue, G X Li et al. Helicity multiplexed broadband metasurface holograms. Nat Commun, 6, 8241(2015).
[34] S Q Li, Z Wang, S H Dong et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces. Nanophotonics, 9, 3473-3481(2020).
[35] Y Z Chen, X Y Zheng, X Y Zhang et al. Efficient meta-couplers squeezing propagating light into on-chip subwavelength devices in a controllable way. Nano Lett, 23, 3326-3333(2023).
[36] Z Wang, Y Yao, W K Pan et al. Bifunctional manipulation of Terahertz waves with high-efficiency transmissive dielectric metasurfaces. Adv Sci, 10, 2205499(2023).
[37] A Ali, A Mitra, B Aïssa. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials, 12, 1027(2022).
[38] X N Ou, T B Zeng, Y Zhang et al. Tunable polarization-multiplexed achromatic dielectric metalens. Nano Lett, 22, 10049-10056(2022).
[39] Y F Wen, Q Zhang, Q He et al. Shortening focal length of 100-mm aperture flat lens based on improved Sagnac interferometer and bifacial liquid crystal. Adv Opt Mater, 11, 2300127(2023).
[40] R Sabri, A Forouzmand, H Mosallaei. Genetically optimized dual-wavelength all-dielectric metasurface based on double-layer epsilon-near-zero indium-tin-oxide films. J Appl Phys, 128, 223101(2020).
[41] Z Q Cai, Y M Liu. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces. Adv Opt Mater, 10, 2102135(2022).
[42] J Y Tian, G Adamo, H L Liu et al. Phase-change perovskite microlaser with tunable polarization vortex. Adv Mater, 35, 2207430(2023).
[43] O A M Abdelraouf, Z Y Wang, H L Liu et al. Recent advances in tunable metasurfaces: materials, design, and applications. ACS Nano, 16, 13339-13369(2022).
[44] H T Chen, A J Taylor, N F Yu. A review of metasurfaces: physics and applications. Rep Prog Phys, 79, 076401(2016).
[45] S L Sun, Q He, J M Hao et al. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics, 11, 380-478(2019).
[46] K L Kelly, E Coronado, L L Zhao et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B, 107, 668-677(2003).
[47] W A Murray, W L Barnes. Plasmonic materials. Adv Mater, 19, 3771-3782(2007).
[48] D Franklin, Y Chen, A Vazquez-Guardado et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun, 6, 7337(2015).
[49] K Li, J W Wang, W F Cai et al. Electrically switchable structural colors based on liquid-crystal-overlaid aluminum anisotropic nanoaperture arrays. Opt Express, 30, 31913-31924(2022).
[50] J Zhang, X Z Wei, I D Rukhlenko et al. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics, 7, 265-271(2020).
[51] H T Wang, C L Hao, H Lin et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv, 4, 200031(2021).
[52] L Ju, B S Geng, J Horng et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol, 6, 630-634(2011).
[53] Z Y Fang, Y M Wang, A E Schlather et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett, 14, 299-304(2014).
[54] N L Mou, S L Sun, H X Dong et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt Express, 26, 11728-11736(2018).
[55] A Nemati, Q Wang, N S S Ang et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances. Opto-Electron Adv, 4, 200088(2021).
[56] C Zeng, H Lu, D Mao et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv, 5, 200098(2022).
[57] K L Xiong, G Emilsson, A Maziz et al. Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color. Adv Mater, 28, 9956-9960(2016).
[58] E Arbabi, A Arbabi, S M Kamali et al. MEMS-tunable dielectric metasurface lens. Nat Commun, 9, 812(2018).
[59] C Meng, P C V Thrane, F Ding et al. Dynamic piezoelectric mems-based optical metasurfaces. Sci Adv, 7, eabg5639(2021).
[60] P Camurlu. Polypyrrole derivatives for electrochromic applications. RSC Adv, 4, 55832-55845(2014).
[61] S Abdollahramezani, O Hemmatyar, M Taghinejad et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat Commun, 13, 1696(2022).
[62] M Rahmani, L Xu, A E Miroshnichenko et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv Funct Mater, 27, 1700580(2017).
[63] J Sun, E Timurdogan, A Yaacobi, E S Hosseini et al. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).
[64] L Ding, X S Luo, L Cheng et al. Electrically and thermally tunable smooth silicon metasurfaces for broadband terahertz antireflection. Adv Opt Mater, 6, 1800928(2018).
[65] K Z Kamali, L Xu, N Gagrani et al. Electrically programmable solid-state metasurfaces via flash localised heating. Light Sci Appl, 12, 40(2023).
[66] P P Iyer, M Pendharkar, C J Palmstrøm et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nat Commun, 8, 472(2017).
[67] T Driscoll, S Palit, M M Qazilbash et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl Phys Lett, 93, 024101(2008).
[68] T Driscoll, H T Kim, B G Chae et al. Memory metamaterials. Science, 325, 1518-1521(2009).
[69] L Liu, L Kang, T S Mayer, D H Werner. Hybrid metamaterials for electrically triggered multifunctional control. Nat Commun, 7, 13236(2016).
[70] A Tittl, A K U Michel, M Schäferling et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater, 27, 4597-4603(2015).
[71] N L Mou, X L Liu, T Wei et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale, 12, 5374-5379(2020).
[72] X H Yin, T Steinle, L L Huang et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci Appl, 6, e17016(2017).
[73] F Zhang, X Xie, M B Pu et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv Mater, 32, 1908194(2020).
[74] J Sautter, I Staude, M Decker et al. Active tuning of all-dielectric metasurfaces. ACS Nano, 9, 4308-4315(2015).
[75] A Komar, R Paniagua-Domínguez, A Miroshnichenko et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics, 5, 1742-1748(2018).
[76] I Kim, M A Ansari, M Q Mehmood et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv Mater, 32, 2004664(2020).
[77] W J Padilla, A J Taylor, C Highstrete et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett, 96, 107401(2006).
[78] J Q Gu, R Singh, X J Liu et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun, 3, 1151(2012).
[79] M R Shcherbakov, S Liu, V V Zubyuk et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun, 8, 17(2017).
[80] L Q Cong, Y K Srivastava, H F Zhang et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci Appl, 7, 28(2018).
[81] P J Guo, R D Schaller, J B Ketterson et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat Photonics, 10, 267-273(2016).
[82] Y M Yang, K Kelley, E Sachet et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat Photonics, 11, 390-395(2017).
[83] M K Liu, H Y Hwang, H Tao et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345-348(2012).
[84] Q Wang, E T F Rogers, B Gholipour et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics, 10, 60-65(2016).
[85] P N Li, X S Yang, T W W Maß et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat Mater, 15, 870-875(2016).
[86] M Sharma, T Ellenbogen. An all-optically controlled liquid-crystal plasmonic metasurface platform. Laser Photonics Rev, 14, 2000253(2020).
[87] M X Ren, W Wu, W Cai et al. Reconfigurable metasurfaces that enable light polarization control by light. Light Sci Appl, 6, e16254(2017).
[88] J X Liu, H Zeng, M Cheng et al. Photoelastic plasmonic metasurfaces with ultra-large near infrared spectral tuning. Mater Horiz, 9, 942-951(2022).
[89] L Q Cong, P Pitchappa, Y Wu et al. Active multifunctional microelectromechanical system metadevices: Applications in polarization control, wavefront deflection, and holograms. Adv Opt Mater, 5, 1600716(2017).
[90] T Shimura, T Kinoshita, Y Koto et al. Birefringent reconfigurable metasurface at visible wavelengths by MEMS nanograting. Appl Phys Lett, 113, 171905(2018).
[91] T Roy, S Y Zhang, I W Jung et al. Dynamic metasurface lens based on MEMS technology. APL Photonics, 3, 021302(2018).
[92] M Oshita, H Takahashi, Y Ajiki et al. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever. ACS Photonics, 7, 673-679(2020).
[93] S W He, H M Yang, Y H Jiang et al. Recent advances in MEMS metasurfaces and their applications on tunable lens. Micromachines, 10, 505(2019).
[94] S M Kamali, E Arbabi, A Arbabi et al. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev, 10, 1002-1008(2016).
[95] S C Malek, H S Ee, R Agarwal. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett, 17, 3641-3645(2017).
[96] S M Yuan, A L Chen, Y S Wang. Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation. J Sound Vib, 470, 115168(2020).
[97] L Y Cao, Z C Yang, Y L Xu et al. Deflecting flexural wave with high transmission by using pillared elastic metasurface. Smart Mater Struct, 27, 075051(2018).
[98] L Y Cao, Z C Yang, Y L Xu et al. Disordered elastic metasurfaces. Phys Rev Appl, 13, 014054(2020).
[99] H Kocer, Y Durna, H Kurt et al. Dynamic beam splitter employing an all-dielectric metasurface based on an elastic substrate. Opt Lett, 45, 3521-3524(2020).
[100] S W Lee, J H Oh. Single-layer elastic metasurface with double negativity for anomalous refraction. J Phys D Appl Phys, 53, 265301(2020).
[101] S C Song, X L Ma, M B Pu et al. Actively tunable structural color rendering with tensile substrate. Adv Opt Mater, 5, 1600829(2017).
[102] H Tao, A C Strikwerda, K Fan et al. Reconfigurable terahertz metamaterials. Phys Rev Lett, 103, 147401(2009).
[103] Z L Han, K Kohno, H Fujita et al. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. Opt Express, 22, 21326-21339(2014).
[104] X G Zhao, J Schalch, J D Zhang et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica, 5, 303-310(2018).
[105] Y H Fu, A Q Liu, W M Zhu et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv Funct Mater, 21, 3589-3594(2011).
[106] H S Ee, R Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett, 16, 2818-2823(2016).
[107] X Y Duan, S Kamin, N Liu. Dynamic plasmonic colour display. Nat Commun, 8, 14606(2017).
[108] P Yu, J X Li, X Li et al. Generation of switchable singular beams with dynamic metasurfaces. ACS Nano, 13, 7100-7106(2019).
[109] J X Li, Y Q Chen, Y Q Hu et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano, 14, 7892-7898(2020).
[110] J X Li, S Kamin, G X Zheng et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv, 4, eaar6768(2018).
[111] X Y Duan, S Kamin, F Sterl et al. Hydrogen-regulated chiral nanoplasmonics. Nano Lett, 16, 1462-1466(2016).
[112] Y Cui, R S Hegde, I Y Phang et al. Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications. Nanoscale, 6, 282-288(2014).
[113] X Y Duan, N Liu. Scanning plasmonic color display. ACS Nano, 12, 8817-8823(2018).
[114] Y Nagasaki, M Suzuki, I Hotta et al. Control of Si-based all-dielectric printing color through oxidation. ACS Photonics, 5, 1460-1466(2018).
[115] I Kim, W S Kim, K Kim et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci Adv, 7, eabe9943(2021).
[116] C J Dai, Z J Wang, Y Y Shi et al. Scalable hydrogel-based nanocavities for switchable meta-holography with dynamic color printing. Nano Lett, 22, 9990-9996(2022).
[117] W M Zhu, Q H Song, L B Yan et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv Mater, 27, 4739-4743(2015).
[118] A Afridi, J Gieseler, N Meyer et al. Ultrathin tunable optomechanical metalens. Nano Lett, 23, 2496-2501(2023).
[119] M Y Shalaginov, S D An, Y F Zhang et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun, 12, 1225(2021).
[120] L L Huang, X Z Chen, H Mühlenbernd et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun, 4, 2808(2013).
[121] Z T Xu, L L Huang, X W Li et al. Quantitatively correlated amplitude holography based on photon sieves. Adv Opt Mater, 8, 1901169(2020).
[122] A C Overvig, S Shrestha, S C Malek et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci Appl, 8, 92(2019).
[123] Y S Gao, Y B Fan, Y J Wang et al. Nonlinear holographic all-dielectric metasurfaces. Nano Lett, 18, 8054-8061(2018).
[124] Y W Huang, W T Chen, W Y Tsai et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett, 15, 3122-3127(2015).
[125] E L Wang, J B Niu, Y H Liang et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields. Adv Opt Mater, 8, 1901674(2020).
[126] H R Ren, X Y Fang, J Jang et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol, 15, 948-955(2020).
[127] G Kim, S Kim, H Kim et al. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays. Nanoscale, 14, 4380-4410(2022).
[128] L L Li, T J Cui, W Ji et al. Electromagnetic reprogrammable coding–metasurface holograms. Nat Commun, 8, 197(2017).
[129] J X Li, P Yu, S Zhang et al. Electrically-controlled digital metasurface device for light projection displays. Nat Commun, 11, 3574(2020).
[130] Y Q Chen, X Y Duan, M Matuschek et al. Dynamic color displays using stepwise cavity resonators. Nano Lett, 17, 5555-5560(2017).
[131] F Sterl, N Strohfeldt, R Walter et al. Magnesium as novel material for active plasmonics in the visible wavelength range. Nano Lett, 15, 7949-7955(2015).
[132] B Ko, T Badloe, J Rho. Vanadium dioxide for dynamically tunable photonics. ChemNanoMat, 7, 713-727(2021).
[133] S J Kim, D Lee, J Y Chae et al. Reconfigurable, vivid reflective colors based on solution-processed Fabry-Perot absorber using thermochromic vanadium dioxide. Appl Surf Sci, 565, 150610(2021).
[134] T Badloe, I Kim, J Rho. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide. Sci Rep, 10, 4522(2020).
[135] X B Liu, Q Wang, X Q Zhang et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface. Adv Opt Mater, 7, 1900175(2019).
[136] S Kinoshita, S Yoshioka, J Miyazaki. Physics of structural colors. Rep Prog Phys, 71, 076401(2008).
[137] H Ghiradella. Light and color on the wing: structural colors in butterflies and moths. Appl Opt, 30, 3492-3500(1991).
[138] K Zhang, Y W Tang, J S Meng et al. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements. Opt Express, 22, 27437-27450(2014).
[139] K Li, J W Wang, W F Cai et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals. Nano Lett, 21, 7183-7190(2021).
[140] W H Yang, G Y Qu, F X Lai et al. Dynamic bifunctional metasurfaces for holography and color display. Adv Mater, 33, 2101258(2021).
[141] Y W Huang, H W H Lee, R Sokhoyan et al. Gate-tunable conducting oxide metasurfaces. Nano Lett, 16, 5319-5325(2016).
[142] J Park, B G Jeong, S I Kim et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat Nanotechnol, 16, 69-76(2021).